
MATH 321: 9-17 AND 9-22 GROUPWORK

Having finished the section on logic, our next topic is about strategies for coming up with mathematical
proofs. Before you write your own, however, I want you to look at an example of how to do it. We will look
at a theorem from number theory, and analyze a proof of it. First we need to discuss some definitions. I
have interspaced exercises for you to work out throughout the following, and your homework for this week
will be to submit these exercises. In usual mathematical writing, you won’t see exercises like this mixed
in, as it breaks the flow of the writing. But you should ask yourself these kinds of questions when reading,
constantly checking that you understand what’s going on.

Before we start, one thing I want to emphasize is that when writing mathematical proofs, you never start
from nothing. There are always known mathematical facts you use. For example, below we freely use some
facts about arithmetic and natural numbers without actually proving them. Of course, if you desire you
could prove those facts from even more basic principles, and you could try to reduce those to yet more
basic principles. But you will always have to start with some given statements you didn’t prove—call them
axioms, if you like.

Definition. Let a and b be integers. Say that a divides b, written a | b, if there is an integer n so that
an = b.

Exercise 1. Write a logical formula with the free variables a and b which expresses a | b.

Exercise 2. Check that a | 0 and a | a for any integer a. What are the witnessing integers n?

Exercise 3. Check that a | b does not imply b | a by coming up with a counterexample.

Definition. Let a and b be integers. The greatest common divisor of a and b, written gcd(a, b) is the largest
integer c so that c | a and c | b.

Exercise 4. Write a logical formula with free variables a, b, and c which expresses c = gcd(a, b). [Hint: you
need to say more than c | a and c | b.]

Exercise 5. Check that gcd(a, a) = |a|. Check that if a = 0 and b 6= 0 then gcd(a, b) = |b|. Explain why
gcd(0, 0) is undefined.

Theorem (Bézout’s identity). For all integers a and b, with at least one of them nonzero, there are integers
x and y so that ax + by = gcd(a, b).

Exercise 6. Write this theorem as a logical formula with no free variables.

Exercise 7. Find integers x and y which satisfy Bézout’s identity for the following values for a and b:

• a = 3, b = 0.
• a = 6, b = 4.
• a = 6, b = 14.

Proof. Fix arbitrary integers a and b with at least one of them nonzero. Without loss of generality, say that
a 6= 0. Consider the set X = {n ∈ N : n = ax + by for some integers x, y}. This set is nonempty, because
either a or |a| is in it.

Exercise 8. Write a logical formula which expresses n ∈ X.

Exercise 9. When is a ∈ X, versus when is |a| ∈ X? For both cases, determine the values of x and y which
witness this.

Because X is a nonempty subset of N, it has a smallest element, call it c0 = ax0 + by0. We will now check
that c0 = gcd(a, b). There are two things to check. First, we must check that c0 | a and c0 | b. Second, we
must check that c0 is the largest number with this property.

We will only check that a | c0. The argument that b | c0 is similar. Let q and r be the unique integers
with 0 ≤ r < c0 so that a = qc0 + r.
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Exercise 10. Why are there unique such q and r? [Hint: q stands for “quotient” and r stands for remainder.]

Now do some algebra to get r = a−qc0. By substitution we then get r = a−q(ax0+by0) = a(1−qx0)+by0.
That is, we have seen that r ∈ X ∪ {0}. But r < c0 and c0 is the smallest element of X, so r 6∈ X. Thus
r = 0. Substituting this back in we get a = qc0. That is, c0 | a, as desired.

Exercise 11. Explain how to modify this argument to show c0 | b.

Now consider any integer c so that c | a and c | b. We want to see that c ≤ c0. Fix the integers n and
m so that cn = a and cm = b. By substitution we then get cnx0 + cmy0 = c0. A bit of algebra then gives
c(nx0 + my0) = c0. So c | c0, whence we conclude c ≤ c0.

Exercise 12. Come up with two integers k, ` so that k | ` but k > `.

Exercise 13. Fill in the missing detail for this last step. Why can we conclude c ≤ c0 from c | c0 in this
case?

To summarize: we have seen that gcd(a, b) = c0 = ax0 + by0. That is, we have seen that there are integers
x and y so that ax + by = gcd(a, b), completing the proof. �
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Here is the same material, but without the exercises mixed in.

Definition. Let a and b be integers. Say that a divides b, written a | b, if there is an integer n so that
an = b.

Definition. Let a and b be integers. The greatest common divisor of a and b, written gcd(a, b) is the largest
integer c so that c | a and c | b.

Theorem (Bézout’s identity). For all integers a and b, with at least one of them nonzero, there are integers
x and y so that ax + by = gcd(a, b).

Proof. Fix arbitrary integers a and b with at least one of them nonzero. Without loss of generality, say that
a 6= 0. Consider the set X = {n ∈ N : n = ax + by for some integers x, y}. This set is nonempty, because
either a or |a| is in it. Because X is a nonempty subset of N, it has a smallest element, call it c0 = ax0 + by0.
We will now check that c0 = gcd(a, b). There are two things to check. First, we must check that c0 | a and
c0 | b. Second, we must check that c0 is the largest number with this property.

We will only check that a | c0. The argument that b | c0 is similar. Let q and r be the unique integers
with 0 ≤ r < c0 so that a = qc0 + r. Now do some algebra to get r = a− qc0. By substitution we then get
r = a− q(ax0 + by0) = a(1− qx0) + by0. That is, we have seen that r ∈ X ∪ {0}. But r < c0 and c0 is the
smallest element of X, so r 6∈ X. Thus r = 0. Substituting this back in we get a = qc0. That is, c0 | a, as
desired.

Now consider any integer c so that c | a and c | b. We want to see that c ≤ c0. Fix the integers n and
m so that cn = a and cm = b. By substitution we then get cnx0 + cmy0 = c0. A bit of algebra then gives
c(nx0 + my0) = c0. So c | c0, whence we conclude c ≤ c0.

To summarize: we have seen that gcd(a, b) = c0 = ax0 + by0. That is, we have seen that there are integers
x and y so that ax + by = gcd(a, b), completing the proof. �


