
MATH655 EXERCISES: POSET COMBINATORICS

KAMERYN J. WILLIAMS

The basic combinatorial objects used in forcing are posets. This exercise set will lead through
you through an investigation of how set theorists handle them. Please write up your solutions to
these exercises and turn them in to me before we start Part 2. (Exact date pending; I’ll update the
course website as we get closer.)

A poset1 (P, <) is a set P equipped with a transitive, irrelexive relation <. As is typical, we will
write p ≤ q if p < q or p = q, and use > and ≥ for the reversed relation. We refer to elements
of posets as conditions, and we think of conditions as containing partial information about some
generic object. We will prefer to think of posets as growing downward, with p ≤ q meaning that p
is a stronger condition than q, containing more information. We will work with posets that have
a maximum element, call it 1. (If a poset lacks a maximum, it can easily be modified to add a
maximum, so this restriction is a harmless convenience.) This condition 1 is the one that contains
no information.

If p, q ∈ P, we say that p and q are compatible, written p ‖ q if there is r ∈ P so that r ≤ p and
r ≤ q. Otherwise, if there is no such r, we say that p and q are incompatible, written p ⊥ q. The
intuition is: if p and q could be partial descriptions of the same object, then they are compatible.
But if they are mutually exclusive partial descriptions, then they are incompatible. If for all p ∈ P
we can strengthen p to two incompatible conditions—that is, there are q, r ≤ p so that q ⊥ r—we
say that P is nontrivial.

Example 1. Consider the infinite binary tree P = <ω2, ordered by reverse inclusion: p ≤ q if p ⊇ q.
Then P is a nontrivial poset with maximum element the empty sequence. (To check that it is
nontrivial: given any condition p, extend p to pa0 and pa1, which are incompatible.)

Exercise 2. Show that every nontrivial poset is infinite. Show that no linear order is nontrivial.

Exercise 3. Let α, β be ordinals. Then <αβ is the collection of all sequences of ordinals < β of
length < α. We order this tree by reverse inclusion: p ≤ q iff p ⊇ q. Show that if α is limit and
β ≥ 2 then <αβ is a nontrivial poset.

Given a poset P, we can put a topology on it. Namely, the basic open sets are of the form
Np = {q ∈ P : q ≤ p}.

Exercise 4. Give a topological characterization of nontriviality.

Several topological properties of a poset are of intertest to us, with openness and density standing
out here. The following two exercises have you give combinatorial characterizations for them.

Exercise 5. Show that A ⊆ P is open iff A is downward-closed—p ∈ A and q ≤ p implies q ∈ A.

Exercise 6. Show that D ⊆ P is dense iff given any p ∈ P there is q ≤ p with q ∈ D.

Date: February 20, 2019.
1Partially ordered set.
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A key notion is that of a generic filter over a poset.

Definition 7. F ⊆ P is a filter if it satisfies the following.

(1) 1 ∈ F ;
(2) F is upward-closed—p ∈ F and q ≥ p implies q ∈ F ; and
(3) F is directed—p, q ∈ F implies p ‖ q.

Exercise 8. Give a topological characterization of when a subset of P is a filter.

Definition 9. Let D be a collection of dense subsets of P. Then a filter G is D-generic if for every
D ∈ D there is p ∈ G∩D. We summarize this situation by saying that G meets D. If D = {D} we
will abuse terminology a bit and say that G meets D.

If we are concerned about a filter meeting a dense set, we can freely assume without loss that
the dense set is open.

Exercise 10. Let P be a poset and suppose D ⊆ P is dense. Let D̄ be the smallest open set
containing D. That is, D̄ = {p ∈ P : ∃q ∈ D p ≤ q}. Manifestly, D̄ is still dense. Show that a filter
F meets D iff F meets D̄.

The following is the fundamental lemma about generic filters. It is sufficiently important that I
will give the proof, rather than leaving it as an exercise.

Lemma 11. Let D be a countable collection of dense subsets of P. Then there is a filter G which
is D-generic.

Proof. Enumerate D as D0, . . . , Dk, . . ., where k ∈ ω. We will define a sequence of increasingly
stronger conditions. Start with p0 = 1. Given pk, pick pk+1 ≤ pk which meets Dk. Such exists
because Dk is dense.

We now use this sequence of conditions to define G. Namely, set G = {q ∈ P : ∃k q ≥ pk}. I
claim that G is a D-generic filter. First check it’s a filter: Clearly 1 ∈ G and G is upward closed.
And G is directed because if q, r ∈ G then q, r ≥ pk for large enough k, witnessing that they are
compatible. Finally, we want to check genericity. To this end, fix D ∈ D. Then D = Dk for some
k. Then pk ∈ G ∩Dk, as desired. �

This argument can be pushed to give generics for larger collections of dense sets, provided our
poset satisfies an additional property.

Definition 12. Let κ be an infinite cardinal. Say that P is κ-closed if given any decreasing sequence
〈pi : i < α < κ〉 of conditions of length < κ—that is, pi ≥ pj for i < j—there is a condition p below
each pi.

Exercise 13. Show that if P is κ+-closed and D is a collection of dense subsets of P of cardinality
≤ κ then there is a filter G which is D-generic.

Exercise 14. Let κ ≥ ω and λ ≥ 2 be cardinals, where κ is regular. Show that P = <κλ is κ-closed.

Exercise 15. Let κ ≥ ω be regular. Find a nontrivial poset which is κ-closed but not κ+-closed.

On the other hand, there is an upper limit for genericity, for non-boring posets.

Exercise 16. Let P be a nontrivial poset and let D be the collection of all dense subsets of P. Show
that there is no D-generic filter. (Hint: Suppose F ⊆ P is a filter and consider D = P \F . Start by
showing that D is dense.)
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Exercise 17. Show that if P is a trivial (= not nontrivial) poset then there is p ∈ P so that
Np = {q ∈ P : q ≤ p} consists of pairwise-compatible conditions. Conclude that if P is trivial then
there is always a D-generic filter where D is the collection of all dense subsets of P.

Another object of interest to us is that of the antichain.

Definition 18. Let P be a poset. Then A ⊆ P is an antichain if p, q ∈ A implies p⊥ q.

Exercise 19. Show that every poset P admits maximal antichains. That is, there is A ⊆ P an
antichain so that there is no B ) A an antichain.

One reason antichains are important is that generic filters can only select at most one element
from an antichain.

Exercise 20. Suppose A ⊆ P is an antichain and G is a D-generic filter for P, where D is a nonempty
collection of dense subsets of P. Show that G contains at most 1 element of A.

Definition 21. Let κ ≥ ω be a cardinal. Then P has the κ-chain condition, abbreviated κ-cc, if
every anti-chain in P has cardinality < κ.2 Another name for the ω1-chain condition is the countable
chain condition, or ccc.

Exercise 22. Fix κ ≥ ω. Find a nontrivial poset which has the κ+-cc but not the κ-cc.

Finally, we end this exercise set with a taste of how generic filters relate to models of set theory.
Let M be a transitive model of ZFC. Let P ∈M be a poset. Say that a filter G ⊆ P is M -generic

if G is DM -generic where DM is the collection of all dense subsets of P which are in M .

Exercise 23. Show that M -generics exist whenever M is a countable.

Exercise 24. Suppose P is nontrivial. Show that if G ⊆ P is M -generic then G 6∈M .

Exercise 25. Suppose A ∈M is an antichain of P so that M |= A is a maximal antichain. Suppose
G is M -generic. Show that G ∩A has exactly one element.
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2Yes, the name is bad. It really should be the κ-antichain condition. But the κ-cc name has enough inertia that
it would be silly to try to change it.


