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In this part of the course we will review some logical results we will need in the remainder.
Mathematical logicians settled upon first-order logic as the standard. Like other conventions in

mathematics, the history of this is littered with controversy and disagreement. But we will take
the usual approach of ignoring all that, barely touching upon alternative logics.

First-order logic has two main flavors of advantages. The first is that it enjoys many nice
metalogical properties—compactness, completeness, Löwenheim–Skolem theorems, and so on. The
second is that it has proven to be well suited for applications within mathematics. We will see some
of these nice properties below. And the in parts 1 through 3 of the course we will get exposed to
some applications.

A first-order structure or model is a set M equipped with some number of constants, functions,
and relations over M , where we require all functions and relations to have finite arity. That is, each
function is f : Mn →M and each relation is R ⊆Mn. I will write (M ; c, f,R, . . .) for the structure
with universe M and constants, functions, and relations c, f,R, . . .. I will often abuse notation and
refer to the structure simply as M , leaving the rest implicit.

Example 1. The ordered ring (Z; 0, 1,+, ·, <) is a first-order structure. Another example would be
the structure (Vκ,∈) for a cardinal κ.

For many applications, we can assume that our structures only have relations, with no constants
nor functions. (For example, we could instead consider Z where we attached the graphs of + and ·
as relations, rather than having the functions.) And since we are mainly interested in set theoretic
structures, transitive sets equipped with the membership relation, this restriction will be of no harm
to us.

Given a structure (M ;R0, . . . , Ri, . . .), the signature of M is the map s which sends i to the arity
of Ri. The language of M is the collection of first-order formulae with the usual logical symbols
∃,∀,∧,∨,¬,=, countably many variable symbols, and nonlogical relational symbols Ri each of arity
s(i). Following standard convention, we will tend to not notationally distinguish Ri the relation on
M from Ri the symbol. For example, we will use “+” to refer to both the addition operation on
Z and the formal symbol used in formulae. In case I want to emphasize the relation on M , I will
write Ri

M .
To be more precise, the language of M is the collection of formulae recursively defined by the

following schema. Here, I use x, y, z, . . . as metasyntactic variables for logical variables. It is to be
understood that, e.g., saying x = y is in the language of M means that corresponding formula is in
the language of M for any choice of logical variables.

• x = y is in the language of M ;
• Ri(x0, . . . , xn−1) is in the language of M , where Ri has arity n;
• If ϕ and ψ are in the language of M , then so are ¬(ϕ), (ϕ) ∧ (ψ), and (ϕ) ∨ (ψ).
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• If ϕ is in the language of M , then so are ∃x(ϕ) and ∀x(ϕ). For this case, we will tacitly
assume that x is not a bound variable of ϕ, meaning under the scope of a quantifier in ϕ.

The intention here is that quantification is to be over elements of a structure. Contrast
this with second-order logic, which also allows quantification over subsets of the structure.

For readability, we will freely drop parentheses where it is unambiguous. E.g. we write ϕ ∧ ψ ∧ θ
rather than (ϕ) ∧ ((ψ) ∧ (θ)) or any other way of putting parentheses in, all of which are logically
equivalent.

An important feature of first-order logic is that formulae are finite. There are infinitary logics,
allowing infinite conjunctions/disjunctions or infinite quantifier blocks, but we will not talk about
them.

Example 2. The language of set theory is built up from the logical symbols and the relational
symbol ∈ of arity 2. As is common for binary relations, we will write this in infix, writing x ∈ y
rather than ∈ (x, y).

In addition to describing the syntax for first-order logic, the rules for the formal languages and
symbol manipulation, we must also talk about the semantics, the connection between the formal
language and structures. If we are being sticklers, then we first must talk about substitution—
replacing free variables (= unbound variables) in a formula with elements from a structure. This
works exactly as you expect, but I will skip over the picky details. I will simply write ϕ to refer to
a formula, possibly after substitution. If I want to emphasize that a formula has a free variable I
will write ϕ(x) or similar. And to emphasize that an element a has been substituted for the free
variable I will write ϕ(a).

Definition 3 (Tarski). Let (M ;R, . . .) be a structure. Then the satisfaction relation M |= ϕ(ā)
between formulae ϕ in the language of M and tuples ā of elements from M is recursively defined
as follows. Think: “snow is white” is true iff snow is white.

• M |= a = b iff a = b;
• M |= R(ā) iff ā ∈ RM ;
• M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ;
• M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ;
• M |= ¬ϕ iff M 6|= ϕ;
• M |= ∃x ϕ(x) iff there is a ∈M so that M |= ϕ(a); and
• M |= ∀x ϕ(x) iff for every a ∈M we have M |= ϕ(a).

If T is a theory in the language of M—a set of formulae in the language of M—we write M |= T
whenever M |= ϕ for each ϕ ∈ T . And we write T |= ϕ if whenever M |= T we have M |= ϕ.

I will not say any details about formal proofs, but you should know that you can formally define
a proof system for first-order logic. Moreover, the proof system can be defined to be effective. If you
start out with a computable set of nonlogical symbols then recognizing formulae in the language,
checking whether a proof is valid, etc. are all computable procedures. If T is a set of formulae, we
write T ` ϕ if there is a formal proof of ϕ using T as axioms.

Lacking an explication of a proof system, we cannot prove the following two results. Nevertheless,
they are important and you should be aware of them.

Theorem 4 (Soundness theorem). If T |= ϕ then T ` ϕ.

Theorem 5 (Gödel’s completeness theorem). If T ` ϕ then T |= ϕ.
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An immediate corollary of these results is that a theory is consistent—i.e. it does not prove a
contradiction—iff it has a model.

Another result you should know of but I shan’t prove is the compactness theorem. You can
immediately derive it from the completeness theorem plus the fact that a proof can only use finitely
many axioms. The more model theoretically inclined may prefer to prove it using ultraproducts.

Theorem 6 (Compactness theorem). A theory T has a model iff every finite T0 ⊆ T has a model.

A central notion in this context is that of the elementary submodel.

Definition 7. M is a submodel of N , written M ⊆ N , if they are structures with the same arity
and for each relation symbol R in their language we have RM = RN ∩Mk, where k is the arity of
R. That is, M is the restriction of N to a smaller domain.
M is an elementary submodel of N , written M ≺ N , if M ⊆ N and for all ā ∈ M we have

M |= ϕ(ā) iff N |= ϕ(ā). In short, M is an elementary substructure of N if they agree on the truth
about elements of M .

Exercise 8. Show that (Q, <), that is the rationals equipped only with their order, is an elementary
substructure of (R, <). Show that (Q,+, ·, <) is not an elementary substructure of (R,+, ·, <).

The following theorem gives a nice test for being an elementary substructure.

Theorem 9 (Tarski–Vaught test). Suppose that M is a first-order structure and N ⊆ M is a
substructure of M . Then N ≺ M iff the following test is satisfied: for any formula ϕ(x, ȳ) in the
language of M and any ā ∈ N , if M |= ∃x ϕ(x, ā) then such an x is in N .

Proof. (⇒) Fix ā ∈ N and a formula ϕ(x, ā). If M |= ∃x ϕ(x, ā) then by elementarity N |=
∃x ϕ(x, ā). So pick b ∈ N so that N |= ϕ(b, ā). Then by elementarity M |= ϕ(b, ā), as desired.

(⇐) We prove this by induction on formulae. The atomic case holds because N is a substructure
of M . The boolean cases are straightforward. For quantifiers, it suffices to consider only existential
quantifiers, since every formula is logically equivalent to a formula without universal quantifiers.
So fix ā ∈ N and assume that for all b ∈ N we have that N |= ϕ(b, ā) iff M |= ϕ(b, ā). We want
to see N |= ∃x ϕ(x, ā) iff M |= ∃x ϕ(x, ā). The forward direction is immediate—if b ∈ N witnesses
that N |= ∃x ϕ(x, ā) then b also witnesses that M |= ∃x ϕ(x, ā). (But notice that we appealed to
the inductive hypothesis.) For the backward direction, the Tarski–Vaught test tells us that if there
is a witness to M |= ∃x ϕ(x, ā), then there is a witness in N . �

Theorem 10 (Downward Löwenheim–Skolem). Let T be a first-order theory in a language L.
Suppose M |= T is infinite and let X ⊆ M . Then there is N ≺ M so that X ⊆ N and |N | =
max{ℵ0, |X| , |L|}. In particular, if T is in a finite language then there are elementary submodels
of M of every infinite cardinality ≤ |M |.

Proof. First, let us see that there are Skolem functions for M . That is, for each formula ϕ(x, ȳ) in
the language of M there is a partial function sϕ so that if M |= ∃x ϕ(x, ā) then if b = sϕ(ā) we
have M |= ϕ(b, ā). Such functions exist because we can well-order M . Namely, fix a well-order of
M and let sϕ(ā) be the least, according to that well-order, witness that M |= ∃x ϕ(x, ā), if such
exists.

Now we can construct N , which we do in ω many stages. Start with N0 = X. Given Nk, let
Nk+1 be the closure of Nk under the Skolem functions for M . That is, b ∈ Nk+1 if there are ā ∈ Nk
and a formula ϕ(x, ȳ) in the language of M so that b = sϕ(ā). Finally, set N =

⋃
k<ω Nk.
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Let us see that N ≺M . We do this by using the Tarski–Vaught test. So fix ā ∈ N and suppose
that M |= ∃x ϕ(x, ā). Fix k large enough so that ā ∈ Nk. Then b = sϕ(ā) ∈ Nk+1 ⊆ N and
M |= ϕ(b, ā). So the Tarski–Vaught test is passed, so N ≺M .

Finally, we must see that N has the claimed cardinality. I leave this for you as an exercise in
cardinal arithmetic. �

The N we constructed in the above proof is called the Skolem Hull of X (with respect to the
choice of Skolem functions).

There is also an upward Löwenheim–Skolem theorem, asserting that M has elementary super-
models of larger cardinality. To prove it we will need some new tools. And since these tools will be
hella important later, they are worth spending time on.

Definition 11. Let X be a set. A filter on X is a set F ⊆ P(X) with the following properties.

(1) X ∈ F and ∅ 6∈ F ;
(2) If A,B ∈ F then A ∩B ∈ F ; and
(3) If A ∈ F and B ⊇ A then B ∈ F .

The dual notion is that of an ideal.

Definition 12. Let X be a set. An ideal on X is a set I ⊆ P(X) with the following properties.

(1) ∅ ∈ I and X 6∈ I;
(2) If A,B ∈ I then A ∪B ∈ I; and
(3) If A ∈ I and B ⊆ A then B ∈ I.

Exercise 13. Let X be a set. Show that if I is an ideal on X then {A : X \ A ∈ I} is a filter on
X. And show that if F is a filter on X then {A : X \ A ∈ F} is an ideal on X. These are known
as the dual filter/ideal.

We think of filters as giving a notion of largeness for subsets of X, whereas ideals give a notion
of smallness for subsets of X.

Exercise 14. Let X be an infinite set. The Fréchet filter on X is F = {Y ⊆ X : X \ Y is finite}.
Show that the Fréchet filter is indeed a filter.

We are especially intetrested in certain filters, known as ultrafilters.

Definition 15. A filter U on X is called an ultrafilter if it has the property that for every A ⊆ X
either A ∈ U or X \ A ∈ U . An ultrafilter U is principal if there is x ∈ X so that A ∈ U iff x ∈ A.
Otherwise, U is nonprincipal.

Lemma 16. The ultrafilters are precisely the maximal filters. That is, if X is a set and F is a
filter on X, then F is an ultrafilter iff there is no filter G on X with F ( G.

Proof. (⇒) Assume that F is an ultrafilter. If there were a filter G ) F on X, then there would
be A ∈ G \ F . But since A 6∈ F , we would have that X \ A ∈ F . Then A ∩ (X \ A) = ∅ ∈ G,
contradicting that G is a filter.

(⇐) By contrapositive. Suppose that F is not an ultrafilter. Then there is A ⊆ X so that neither
A nor X \ A is in F . It must be that at least one of these two sets is not in the ideal dual to F ;
otherwise, without loss of generality assume that this holds for A. Now define

G = {A ∩ F : F ∈ F} ∪ F .
It’s clear that G is closed under superset and intersection. And because A is not in the ideal dual
to F we get that ∅ 6∈ G. So G is a filter extending F , and we are done. �
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Theorem 17 (Tarski). Let F be a filter on X. Then there is an ultrafilter U on X with F ⊆ U .

Proof. By the lemma it is enough to show that F extends to a maximal filter. This can be proved
by a Zorn’s lemma argument. (Exercise: do it!) �

Exercise 18. Fix a regular cardinal κ. Say that C ⊆ κ is closed if for every α < κ we have
supα ∩ C ∈ C. And C is unbounded if for all α < κ we have β > α in C. Subsets of κ which
are both closed and unbounded are known as clubs (for closed + unbounded). Show that the club
subsets of κ form a filter.

Exercise 19. Again fix a regular cardinal κ. Say that S ⊆ κ is stationary if S ∩ C 6= ∅ for every
club C ⊆ κ. If S is not stationary, then it is called nonstationary. Show that the nonstationary
subsets of κ form an ideal which is dual to the club filter.

Using ultrafilters we can take the ultraproduct of a structure. Indeed, the machinery works just
for filters, but using ultrafilters gives especially nice properties.

Definition 20. Let F be a filter on a cardinal κ and fix a first-order structure (M ;R, . . .), where
R, . . . are relations on M . We can then talk about the reduced product Mκ/F , which is defined as
follows.

Define the equivalence relation =F on functions κ→M as f =F g if {α < κ : f(α) = g(α)} ∈ F .
Then κM/=F will be the domain for Mκ/F . The relations of Mκ/F are then defined as follows.

• For each relation R on M , define RF on κM as

f̄ ∈ RF ⇔ {α < κ : (f0(α), . . . , fk(α)) ∈ R} ∈ F .

In case F is an ultrafilter we call the reduced product Mκ/F the ultrapower of M by F . It is
sometimes written Mκ/F = Ult(M,F).

The following exercise shows we can considerRF as being a relation onMκ/F , and so (Mκ/F ; (R0)F , . . .)
is a structure in the same language as M .

Exercise 21. Show that RF is a congruence with respect to =F . That is, if f̄ ∈ RF and fi =F gi
for each i then ḡi ∈ RF .

Observe that M canonically embeds into Mκ/F via the embedding x 7→ cx, where c is the
constant function cx(α) = x. If F is an ultrafilter, then this embedding is elementary.

Theorem 22 ( Loś1). Suppose U is an ultrafilter on κ and let M be a first-order structure, where
we assume M only has relations attached. Then,

Mκ/U |= ϕ([f0]U , . . . , [fn]U )⇔ {α < κ : M |= ϕ(f0(α), . . . , fn(α))} ∈ U .

In particular, M elementarily embeds into Mκ/U , via the map x 7→ cx.

Proof. For convenience, set N = Mκ/U . We prove this by induction on formulae.
(Atomic) This was handled by the above exercise.
(Conjunction) Assume the inductive hypothesis for ϕ and ψ. The forward direction of the

implication follows from U being closed under intersection, and the backward direction of the
implication follows from U being closed under superset.

1“ Loś” is approximately pronounced as “Wash”. (Please don’t tell any Poles about my awful pronounciation.)
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(Negation) Assume the inductive hypothesis for ϕ. Then

N |= ¬ϕ⇔ N 6|= ϕ

⇔ {α < κ : M |= ϕ} 6∈ U
⇔ {α < κ : M 6|= ϕ} ∈ U
⇔ {α < κ : M |= ¬ϕ} ∈ U .

Note that this uses the complement property of ultrafilters.
(Existential quantifier) Assume the inductive hypothesis for ϕ(x, y) for all substitutions into the

variable x and for a fixed substitution g into y. (The case with multiple parameters works similarly.)
We want to see that

N |= ∃x ϕ(x, [g]U )⇔ {α < κ : M |= ∃x ϕ(x, g(α)} ∈ U .
For the forward direction, assume that N |= ∃x ϕ(x, [g]U ). Then, there is [f ]U so that N |=
ϕ([f ]U , [g]U ). So by inductive hypothesis we have that

{α < κ : M |= ϕ(f(α), g(α))} ∈ U
But this set is clearly a subset of {α < κ : M |= ∃x ϕ(x, g(α))}, which must therefore be in U .

For the backward direction, assume A = {α < κ : M |= ∃x ϕ(x, g(α))} ∈ U . For α ∈ A, pick
xα ∈ M so that M |= ϕ(xα, g(α). Now define f : κ → M as f(α) = xα for α ∈ A and arbitrarily
for α 6∈ A. Then,

{α < κ : M |= ϕ(f(α), g(α))} ∈ U .
So by inductive hypothesis N |= ϕ([f ]U , [g]U ), and so N |= ∃x ϕ(x, [g]U ). �

Observe that for the backward direction of the quantifier step we used the axiom of choice. It is
known that  Loś’s theorem is not provable from ZF.

Corollary 23 (Upward Löwenheim–Skolem). Let M be a first-order structure, and let κ > |M |.
Then there is N with |N | = κ so that M ≺ N .

Proof. Exercise. (Hint: By the downward Löwenheim–Skolem theorem, it is enough to find N with
|N | ≥ κ so that M ≺ N . Show that N = Mκ/U works.) �
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1. Exercises

To get a better understanding of the properties of first-order logic, let’s contrast it with second-
order logic.

In first-order logic, only quantification over the domain of discourse is allowed. For example, if
you want to talk about arithmetic in a first-order context you are only allowed to quantify over
numbers, not over sets of numbers. In second-order logic, you are allowed to quantify over subsets
of the domain of discourse. (Equivalently, over relations/functions on the domain of discourse.)
For example, for second-order arithmetic you are allowed to quantify over both numbers and sets
of numbers.2

Exercise 24. Formulate axioms in second-order logic for ordered fields with the least upper bound
property.3 Show that, up to isomorphism, there is a unique structure satisfying these axioms.
Observe that this unique structure is uncountable. Conclude that second-order logic does not
satisfy the Löwenheim–Skolem theorems.

Exercise 25. Formulate axioms in second-order logic for discretely ordered semi-rings which satisfy
induction. Show that, up to isomorphism, there is a unique structure satisfying these axioms.
Conclude that second-order logic does not satisfy the upward Löwenheim–Skolem theorem.

If you have a bit of a background in logic, also do the following exercise.

Exercise 26. Using one of the categoricity results from the earlier exercises, show that there is
no effective proof system for second-order logic which admits both a completeness theorem and a
soundness theorem.

Next let us consider equivalences between formulae.

Definition 27. Let T be a theory and consider formulae ϕ and ψ in the language of T which have
no free variables. Then ϕ and ψ are said to be T -equivalent or equivalent modulo T if T |= ϕ⇔ ψ.
And ϕ and ψ are logically equivalent if ∅ |= ϕ⇔ ψ.

Exercise 28. Show that ϕ and ψ are T -equivalent iff for any M |= T , we have M |= ϕ iff M |= ψ.

Exercise 29. Formulate a definition of T -equivalence for formulae ϕ(x) and ψ(x) with free variables.

Try out the following exercise if you have some background in computability theory.

Exercise 30 (Hilbert’s Entscheidungsproblem is undecidable). Say that ϕ (without free variables)
is logically valid if ∅ |= ϕ. Show that no Turing machine decides the set of logically valid formulae
(in, say, a finite language).

Exercise 31. Use the completeness and soundness theorems to prove the deduction theorem: Let T
be a theory. Then T ` ϕ ⇒ ψ iff T ∪ {ϕ} ` ψ. (Hint: by completeness + soundness it is enough
to show the analogous thing with ` replaced by |=. You can also prove this syntactically, but that
would require first formulating a formal proof system.)

An important notion in model theory is that of a complete theory.

2To be 100% accurate, I should mention that there are other semantics for second-order logic, which restrict
which sets you are allowed to quantify over. What I’m talking about here is second-order logic with full semantics.

3The least upper bound property asserts that if S is a subset of the field and there is x ≥ y for all y ∈ S, then
there is a smallest x.
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Definition 32. A consistent theory T is complete if for every ϕ in the language of T , either ϕ ∈ T
or ¬ϕ ∈ T .

We require T to be consistent so as to avoid the trivial theory consisting of all formulae.

Exercise 33. Show that every consistent theory can be extended to a complete theory.

Exercise 34 ( Loś–Vaught test). Say that a theory T is κ-categorical if any any two models of T
of cardinality κ are isomorphic. Show that if a consistent theory T in a finite language has only
infinite models and is κ-categorical for some κ ≥ ω, then T is complete.
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