
MATH655 LECTURE NOTES: PART 3 LARGE CARDINALS AND FORCING

KAMERYN J. WILLIAMS

In this, the final part of this course, we will survey some connections between large cardinals and
forcing.

1. Large cardinals cannot settle the continuum hypothesis

We have seen that ZFC does not settle the value of 2ℵ0 . Both CH and ¬CH are consistent with
ZFC. Of course, adding new axioms may decide the continuum hypothesis. Trivially, adding CH
as an axiom settles the question. But there are less trivial axioms one could add. For example,
Gödel’s axiom of constructibility V = L implies GCH. On the other side, the proper forcing axiom
PFA implies that 2ℵ0 = ℵ2.

A natural question is whether large cardinal axioms can settle CH. This is natural for a few
reasons. First off, large cardinal axioms are the extensions of ZFC we have covered in this class.
So they are of interest for that reason :P More substantially, large cardinal axioms are generally
considered to be the strongest candidates for axioms extending ZFC. I shan’t dive into the arguments
for this, as that would require going too deep into philosophy of mathematics. And note that this
opinion is by no means universal, and there are well-regarded set theorists who don’t ascribe to it.
But we will take it as a given that large cardinal axioms are of interest. To gesture at the historical
importance of these questions, Gödel had hoped that large cardinals would be able to settle CH.

How unfortunate then that large cardinals cannot decide CH.
This statement must be qualified a bit. There isn’t a precise formal definition of a large cardinal.

And “definitions” which are too broad admit silly counterexamples.

Exercise 1. Come up with a property a cardinal can have so that the existence of such a cardinal
implies both Con(ZFC) and CH.

But the statement is true for all established large cardinal notions. Let us begin by seeing why
the existence of an inaccessible cardinal cannot settle CH.

Observation 2. Suppose κ is inaccessible. Then, after forcing forcing with either P = Add(ω, ω2)
or Q = Add(ω1, 1), we have that κ remains inaccessible.

Proof. We have already seen that forcing with a poset cannot affect the continuum function above
its cardinality. Since P and Q are both much smaller than κ, we thereby get that κ remains strong
limit in the extension. So we only have to see that κ is regular. Fix regular λ < κ so that P and
Q both have the λ-cc. (λ = i+

1 suffices.) Then P and Q preserve regular cardinals ≥ λ, so we are
done. �

Corollary 3. The same holds for κ being Mahlo.

Proof. The only remaining step is to see that forcing with P or Q doesn’t change whether a subset
of κ is stationary. Exercise: check this! �
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Let me note that what we used about P and Q here is that they are both small relative to κ.
In general, small forcings cannot destroy inaccessibility. So any of the independence results about
small sets which can be forced on or off by small forcing will not be settled by inaccessible cardinals.

Moving to larger forcings, we can destroy the inaccessibility of κ when changing the cardinality
of the continuum. For instance, if we force with Add(ω, κ) then κ will no longer be strong limit,
hence no longer inaccessible. On the other hand, something of the large cardinal nature of κ will
remain.

Proposition 4. Let κ be inaccessible and λ be any uncountable cardinal. Then κ remains weakly
inaccessible after forcing with Add(ω, λ).

Proof. We saw in part 2.2 that Add(ω, λ) has the ccc, so it will preserve cardinals and cofinalities.
In particular, κ remains regular and remains an aleph fixed-point. �

Let us move now from inaccessible cardinals to something more interesting. Here, we will say
that a forcing P is small when |P| < κ, for a specific κ we have in mind. As before, what we want
to see is that if κ has a large cardinal property then small forcing won’t destroy that large cardinal
property. It will immediately follow that that large cardinal property cannot settle CH, or many
other independence results about small cardinals.

We first look at measurable cardinals.

Theorem 5 (Lévy–Solovay). Let κ be a cardinal and P be small. Then κ is measurable in the
forcing extension iff it was measurable in the ground model.

Proof. We really prove the following two facts, which amount to an elaboration of the statement of
the theorem. Here, D is any set in V and G ⊆ P is V -generic.

(1) Each κ-complete ultrafilter on D in V generates a κ-complete measure on D in V [G].
(2) Each κ-complete ultrafilter on D in V [G] is generated in this way by a measure in the

ground model.

(1) Let U be a κ-complete ultrafilter on D in V . Defined W in V [G] as

W = {X ⊆ D : ∃Y ∈ U Y ⊆ X}.
It is straightforward to see that W is a filter. (This is an instance of the more general phenomenon
of a filter base generating a filter.) Next we want to see it is an ultrafilter. To that end, fix

X ⊆ D in V [G] and suppose p 
 Ẋ 6∈ Ẇ for some p ∈ G. But then, for any q ≤ p, the set

Xq = {a ∈ D : q 
 ǎ ∈ Ẋ} cannot be in U . Because |P| < κ and U is κ-complete, we get
that Y =

⋃
q≤pXq is not in U . Because U is an ultrafilter, it must be that D \ Y ∈ U . But

X =
⋃
q∈GXq ⊆ Y , so D \ Y ⊆ D \X, so D \X ∈W .

Next let us see that W is κ-complete. To this end, suppose we have Xα 6∈ W subsets of D in
V [G] for each α < γ < κ. Suppose p ∈ G forces this. Similar to before, for each q ≤ p and each

α < γ set Xα,q = {a ∈ D : q 
 ǎ ∈ Ẋα}. We then get, similar to before, that each Xα,q 6∈ U . So
by κ-completeness we get that

⋃
α<γ

⋃
q≤pXα,q 6∈ U . Since this union covers X =

⋃
α<γ Xα, we

therefore get X 6∈W , as desired.
(2) Suppose W ∈ V [G] is a κ-complete ultrafilter on D ∈ V , and set U = W ∩V . Let us see that

U is a κ-complete ultrafilter in V and that W is generated by U as in (1). For the latter claim,

we can decompose X ∈ W as X =
⋃
q∈GXq as before, where Xq = {a ∈ D : q 
 ǎ ∈ Ẋ}. So by

κ-completeness of W we must have Xq ∈ W for some q. But Xq ∈ V , so Xq ∈ U . So W consists
of supersets of sets in U , just as we wanted to check. From this it immediately follows that U is an
ultrafilter.
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Finally, we must see that U is κ-complete. Start by considering p ∈ G so that p 
 Ẇ is a
κ̌-complete measure on Ď. Now in V , for each q ≤ p set Fq = {X ⊆ D : q 
 X̌ ∈ Ẇ}. Then Fq is
is a κ-complete filter on D. (Exercise: check this!) But note that U =

⋃
{Fq : q ≤ p and q ∈ G}.

Because W is generated by U , it follows that W =
⋃
{〈Fq〉V [G]

: q ≤ p and q ∈ G}, where 〈B〉
is the filter generated by the filter base B.1 Suppose W 6= 〈Fq〉V [G]

for each q. But then we can

pick Xq ∈ W \ 〈Fq〉V [G]
for each q, and by κ-completeness get than

⋂
qXq ∈ W but is not in any

〈Fq〉V [G]
. This is a contradiction, so it must be that W = 〈Fq〉V [G]

for some q ∈ G. But then

U = 〈Fq〉V [G] ∩ V = Fq ∈ V . So U is κ-complete, because Fq is κ-complete. �

This settles the question of whether measurable cardinals can settle CH. But let’s pursue this
line of investigation further. With measurable cardinals, what we were really interested in was
the corresponding elementary embeddings of V they gave. We’ve seen that small forcings have
a transparent effect on measures. Can we get something similar for the ultrapower embeddings
generated by the measures?

The answer of course is yes. We wouldn’t spend time on it if it weren’t going to lead anywhere.

Definition 6. Let V ⊆ V ∗ be models of set theory, and j : V → M and j∗ : V ∗ → M∗ are
embeddings. Say that j lifts to j∗ if j = j∗ � V .

Theorem 7. Every embedding j : V → M lifts uniquely to an embedding j∗ : V [g] → M [j(g)] in
any forcing extension V [g] via a V -generic g ⊆ P with P small relative to crit j.

Proof. Because |P| < κ = crit j we have that j(P) = j′′P and thus j � P : P → j(P) is an
isomorphism. Set h = j′′g. Since h is the image of g under an isomorphism of posets, we get that
h is V -generic and, since M ⊆ V , is moreover M -generic. Now define j∗ as j(τg) = j(τ)h. I claim
this map is well-defined. To see this, suppose τg = σg. Then there is some condition p ∈ g so that
p 
P τ = σ. So j(p) 
j(P) j(τ) = j(σ). Since j(p) ∈ h we therefore get j(τ)h = j(σ)h. By a similar
argument we get that j∗ is one-to-one.

Now observe that j∗ : V [g] → M [h], because j(τ) ∈ M . To see that this map is an elementary
embedding, suppose V [g] |= ϕ(τg). Then there is p ∈ g with p 
P ϕ(τ) in V , and so (p) 
j(P) ϕ(j(τ))
in M . But then M [h] |= ϕ(j(τ)h). Next, note that if x ∈ V then x = x̌g and so j∗(x) = j∗(x̌g) =

ˇj(x)h = j(x). So j∗ � V = j.
Finally, we see that j∗ is unique. Note that any lift of j must send g to j′′g = h. But then it

must send τg to j(τ)h, so it must be j∗. �

Because P is small, taking an isomorphic copy as necessary we may assume that P ∈ Vκ. But
then j(P) = P and j fixes P pointwise. In particular, j′′g = g and so the lifted embedding is of the
form j∗ : V [g]→M [g].

Theorem 8. Suppose U ∈ V is a κ-complete measure on D and suppose P ∈ Vκ is small. Then
the unique lift of the corresponding ultrapower embedding jU : V →M is the ultrapower jW by the
measure W generated by U .

Proof. We have seen that the lift of jU is unique, so we only need to see that ju lifts to jW . Observe
that jW has the form jW : V [g] → N [jW (g)] where N =

⋃
α jW (Vα) =

⋃
jW
′′V . We will see that

M = N and that jU = jW � V . First, define π : M → N as follows. Given [f ]U ∈ M let
π([f ]U ) = [f ]W . This map is well-defined, because if {a ∈ D : f(a) = f ′(a)} ∈ U then it is in

1That is, X ∈ 〈B〉 iff X ⊇ b for some b ∈ B.
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W and so [f ]W = [f ′]W . And a similar argument shows that π preserves membership, so it’s a

homomorphism. Let us see π is onto. Take a function f : D → V in V [g] and let ḟ be a name for

f . Take p ∈ g so that p 
 ṫ : Ď → V̌ . Now define fq for each q ≤ p as fq(a) = b iff q 
 ḟ(ǎ) = b̌.
Then f =

⋃
q∈g fq. Because D =

⋃
q∈g dom fq and |g| < κ we get that dom fq ∈W for some q ∈ g.

But then, on a W -big set we have that f = fq, and so [f ]W = [fq]W . Now, since fq ∈ V , we get
that π([fq]U ) = [fq]W = [f ]W . So π is onto. And we can see that π is one-to-one because if f and
f ′ differ on a set in U then they must differ on a set in W . Thus π is an isomorphism. Therefore,
since the membership relation is rigid, we get that π is the identity so M = N . Finally, if x ∈ V
then jU (x) = [cx]U = π([cx]U ) = [cx]W = jW (x). So ju = jW � V . �

Corollary 9. If W is a κ-complete measure in a small forcing extension V [g] then the corresponding
ultrapower embedding jW is the lift of an ultrapower embedding in V .

Proof. We may assume without loss that W is a measure on a set D in V , by taking a bijective
onto an ordinal if necessary. So then U = W ∩V is a κ-complete measure in V on D. And then jU
lifts to jW . �

On the other hand, this does not generalize if we consider embeddings more general than ultra-
power embeddings.

Exercise 10. Let V [x] be an extension of V by adding a Cohen real x. Suppose U0 and U1 are normal
measures on κ in V , which generate W0 and W1 in V [x]. In V [x] consider the direct limit j : V [x]→
M [x] of the iterated ultrapower embeddings jk : V [x] → M [x] defined by jk = jWik

◦ · · · ◦ jWi0
,

where in = x(n). That is, we choose whether to use W0 or W1 by looking at the bits of x and
iterate this out ω many times. Show that x can be reconstructed from j � V . Conclude that j
cannot be the lift of an embedding from V .

Let us turn now to supercompact cardinals. Much of the work has already been done.

Theorem 11. Supercompact cardinals are preserved by small forcing. More specifically, any
supercompactness embedding j : V → M in V lifts uniquely to a supercompactness embedding
j : V [g]→M [j(g)] in a small forcing extension V [g].

Proof. We already know that a λ-supercompactness embedding j lifts uniquely to an j : V [g] →
M [j(g)], since supercompactness embeddings are ultrapower embeddings. We just have to see that
j is a λ-supercompactness embedding. Recall that j′′λ is a seed which generates all of M . We want
to see that j′′λ is a seed which generates all of M [j(g)], as that is the one missing piece.

We have that every element of M is of the form j(f)(j′′λ) for some function f ∈ V . Because
elements ofM [j(g)] are of the form τj(g) for some name τ ∈M , we get that elements ofM [j(g)] are of
the form j(f)(j′′λ)j(g). In V [g], define a new function f0 with the same domain as f as f0(x) = f(x)g
if f(x) is a name, and f0(x) = 4 otherwise. Observe now that j(f0)(j′′λ) = j(f)(j′′λ)j(g) whenever
this is a name. So every element of M [j(g)] has the form j(f0)(j′′λ). That is, j′′λ is a seed which
generates all of M [j(g)]. �

The argument that j′′λ was a seed for the lifted embedding generalizes.

Exercise 12. Suppose a set of seeds S generates an embedding j : V →M . Show that if j : V [g]→
M [j(g)] is a lift of j then S generates the lifted embedding.

We also get that the lifted embedding is the ultrapower by the measure W generated by the
measure U in the ground model giving rise to the original embedding j : V → M . In particular,
this tells us that W is fine and normal.
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Observe that in our argument about j′′λ being a seed for M [j(g)] we didn’t need that the
forcing was small. We only used smallness of the forcing to know that there was a lift. So we get
the following.

Corollary 13. Suppose a λ-supercompactness j : V →M lifts to j : V [G]→M [j(G)] in a forcing
extension. Then the lifted embedding is a λ-supercompactness embedding in the extension. �

Put differently, if we want to know that κ remains λ-supercompact after forcing, we only have to
check that the embedding lifts. Once we know that, we get for free that it is a λ-supercompactness
embedding. That’s nice :)

To close off this section, let us briefly dip our toes into forcings that aren’t small. While it’s nice
to know that small forcing is not destructive, often we find ourselves in a situation where we need
to do a larger forcing. For example, we may want to know whether we can force the GCH to hold
at κ. This cannot be done with small forcing. So we want criteria for when we preserve the large
cardinal properties of κ.

Observe that we do need something. If we allow arbitrary forcings of any size, then we can
destroy the large cardinal properties of κ. For instance, force with Col(ω, κ).

Lemma 14 (The lifting criterion). Suppose j : M → N is an elementary embedding between models
of set theory (set- or class-sized), with forcing extension M ⊆ M [G] and N ⊆ N [H] via posets P
and j(P). Then j lifts to an embedding j∗ : M [G] → N [H] with j∗(G) = H iff j′′G ⊆ H. In such
a case, j∗ is unique.

Proof. (⇒) This is immediate. If j∗(G) = H then j′′G = j∗′′G ⊆ j∗(G) = H.
(⇐) This is the substantive direction. We must define j∗. First, observe that every set in M [G]

is of the form τG where τ ∈ MP. This suggests how to define j∗: set j∗(τG) = j(τ)H . This
is well-defined, since if τG = σG this is forced by some p ∈ G and so j(p) 
j(P) j(τ) = j(σ).
But since j(p) ∈ H, we get that j(τ)H = j(σ)H . And the same argument establishes that j∗

preserves membership, and indeed is elementary, but using p 
P ϕ(σ, . . .) instead. In particular, if
Γ = {(p̌, p) : p ∈ P} is the canonical name for the generic, then j∗(G) = j∗(Γ)H = H. We also get

that j∗(x) = j∗(x̌G) = j(x̌)H = ˇj(x)H = j(x). So j∗ lifts j. Finally, since any lift j∗ of j must
satisfy j∗(τG) = j(τ)j∗(G), it is clear that the embedding is uniquely determined by j∗(G) = H. �

I want to highlight that while the lift j∗ is the unique lift satisfying j∗(G) = H, this does not
mean that j∗ must always be the unique lift. It is possible for j to lift to other embeddings j†, but
with j†(G) = H† 6= H yet nevertheless N [H†] = N [H].

Theorem 15. Suppose j : V →M is an ultrapower embedding in V via a measure U on κ. Let P
be κ+-closed and G ⊆ P be V -generic. Then j lifts uniquely to an embedding j : V [G] → M [j(G)]
in the extension.

Proof. Because G is a filter, elements of G are directed. So by elementarity of j we get that j′′G
is a directed subset of j(P). Let H = {q ∈ j(P) : ∃p ∈ G j(p) ≤ q}. Then H is a filter. (Exercise:
check this!) We want to see that H is M -generic for j(P). Take D ⊆ j(P) an open dense set in M .
Then D = j(d)(κ), where d : κ→ V is a function in V . So this means that A = {α < κ : j(α) is an
open dense subset of P} is in U . Let 〈αi : i < κ〉 enumerate A in increasing order. Now let’s define
a descending sequence of conditions 〈pi : i ≤ κ〉 in G. Start with p0 ∈ G arbitrary. Given pi, let
pi+1 ≤ pi be in G∩ d(αi). At limit stages ` ≤ κ, take p` ∈ G a lower bound to the partial sequence
so far which. At the end, we have p = pκ ∈ G so that p ∈ d(α) for U -many α < κ. So we get that
j(p) ∈ j(d)(κ) = D. Thus, since j(p) ∈ j′′G ⊆ H we get that H ∩D 6= ∅.
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Now, by the lifting criterion we get that j lifts to j : V [G] → M [j(G)] with j(G) = H. To
see the lift is unique, suppose j∗ : V [G] → M [j∗(G)] is another lift of j. It must then be that
j′′G = j∗′′G ⊆ j∗(G). So by the definition of H, we get that H ⊆ j∗(G). But then H = j∗(G). So
by the uniqueness property of the lifting criterion we get j = j∗. �

Note that we don’t need this machinery to conclude that κ+-closed forcing preserves the mea-
surability of κ. Since κ+-closed forcing doesn’t add new subsets of κ, all the old measures remain
measures in the extension. This theorem gives us extra information, telling us that the embeddings
in the ground model lift to the embedding.

Corollary 16. Suppose κ is measurable. Then you can force 2κ = κ+ while preserving the ultra-
power embeddings from measures on κ.

Proof. Force with Add(κ+, 1). We saw in part 2.2 that this forces 2κ = κ+. And since it is
κ+-closed, we know that measures on κ in the ground model lift. �
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2. The number of normal measures

Recall that if κ is measurable then there is a normal measure on κ. One question that has been
investigated by set theorists is how many normal measures there may be. Using an inner model
theoretic argument, Kunen showed that it is consistent for κ to be measurable and have a unique
normal measure. We won’t see Kunen’s argument, as that would require we devote several weeks
to the basics of inner model theory. But it gives us a jumping off point. Can we have more than
one normal measure on κ?

Kunen and Paris did better than > 1, and showed that it is consistent to have as many normal
measures as possible.

Theorem 17 (Kunen–Paris). Suppose κ is measurable. Then there is a forcing extension in which
κ has 22

κ

many normal measures.

Proof. Without loss of generality we may assume 2κ = κ+. The poset P = Pκ we force with
will be an Easton support iteration on the inaccessible cardinals γ < κ, with the γth stage being
Qγ = Add(γ+, 1)V [Gγ ], where Gγ ⊆ Pγ is the restriction of the generic G to the stages below γ.

Let G ⊆ Pκ be the V -generic for the forcing. Note that j(Pκ) = Pκ ∗ Ṗ[κ,j(κ)), where Ṗ[α,β) is (a
name for) the restriction of P to the interval [α, β).

We get that M [G] |= P[κ,j(κ)) is κ+-closed, since it is an iteration of κ+-closed forcings with
enough support. Now note that M [G] is closed under κ-sequences (from V [G]), because M is
closed under κ sequences from V and P is κ-cc. (This latter fact requires some nontrivial analysis
of iterations.) And V [G] thinks that j(κ) has cardinality κ+, because j(κ) < (2κ)+ = κ++ by
the assumption that GCH holds at κ. So in V [G] we get that there at most κ+ many antichains
in P[κ,j(κ)). This implies that in V [G] we can construct K ⊆ P[κ,j(κ)) which is M [G]-generic.
(Recall from your poset combinatorics exercises that if P is λ-closed then you can find a filter
meeting λ-many dense sets.) So if we build K then we get that j′′G ⊆ G ∗ K. So j will lift to
j : V [G]→M [G ∗K], and this is unique for this choice of generic.

So the question we must face is: how many ways are there to build K? Note that we always have
j′′G ⊆ G ∗K no matter how we built K, so that won’t be an issue. We build K by enumerating,
in V [G], the κ+ many maximal antichains as 〈Ai : i < κ+〉. We will use these to build a tree of
stronger and stronger conditions, the branches of which will generate different choices of K. We
start with p∅ ∈ A0. Then, because P[κ,j(κ)) is nontrivial, we can extend p∅ to two incompatible
conditions. These conditions can then be extended to meet A1, giving us p〈0〉, p〈1〉 ∈ Ai. In general,

going from stage i to stage i + 1 we are faced with conditions ps where s ∈ i2. We can extend ps
in two incompatible ways, then extend those conditions to psa0, psa1 ∈ Ai+1. And a limit stages `
we can find lower bounds in A` by the κ+-closure of P[κ,j(κ)) in M [G].

In the end, we have built a tree of conditions ps for each s ∈ <κ+

2, where s ⊆ t implies ps ≥ pt.
This is a perfect tree, meaning that each node splits. So, in V [G], it has 2κ

+

= 22
κ

many branches.
And each of these branches gives a different choice of K, which each give different lifts of j, and
hence different normal measures. So we know that in V [G] that there must be at least 22

κ

many
normal measures on κ. But that is the maximum possible number, so it must be the precise
count. �

This establishes an upper bound for the number of normal measures. What about intermediate
values? Can we have fewer, but still more than 1, normal measure on κ?

Theorem 18 (Apter–Cummings–Hamkins). Let κ be measurable. Then there is a forcing extension
in which κ has exactly κ+ many normal measures.
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Before proving this we need some set-up.

Definition 19. A forcing P admits a gap at δ if P factors as Q ∗ Ṙ where Q is nontrivial, |Q| < δ

and 1Q 
 Ṙ is δ-closed.2

Theorem 20 (Hamkins). Let P admit a gap at δ and G ⊆ P be V -generic. Suppose j : V [G] →
M [j(G)] is an embedding with critical point κ > δ. Then j � V : V → M is a (definable) class in
V .

We won’t have time in this class to prove the gap forcing theorem. The full proof can be found in:
Joel David Hamkins, “Gap Forcing”, Israel Journal of Mathematics, vol 125, (2001), pp 237–252.

Before we prove the Apter–Cummings–Hamkins result, let me tell you the basic idea. We know,
from the Kunen–Paris result, that it’s consistent to have 22

κ

many normal measures on κ. So, what
if we just collapse 22

κ

to be κ+? Can this drop down the number of normal measures while not
disturbing anything else?

It turns out this doesn’t quite work—why should it be that we didn’t add new normal measures
when collapsing 22

κ

? But with a small tweak this idea will work.

Proof of Apter–Cummings–Hamkins. We may assume κ has 22
κ

many normal measures and that
2κ = κ+. Consider P = Add(ω, 1) ∗ Col(κ+, 22

κ

), with c ∗ G ⊆ P a V -generic. We will see that in
V [c][G] that κ has exactly κ+ many normal measures.

First, note that because Add(ω, 1) is small forcing, that every measure on κ in V [c] is generated
by a measure in V . So in V [c] there are 22

κ

many normal measures on κ. Moreover, they remain
measures in V [c][G] since Col(κ+, 22

κ

) is κ+-closed, and thus cannot add any subsets to κ. So we
get that there are at least κ+ many normal measures on κ in V [c][G].

For the other direction of the inequality, take W ∈ V [c][G] a normal measure on κ, and let
j : V [c][G]→M [c][j(G)] be the embedding generated by W . Now note that P admits a gap at, say,
ω7, exactly by how P was defined. So by the gap forcing theorem we get that j � V is definable in
V . Then j � V lifts to j∗ : V [c]→ M [c]. Now, define U ∈ V [c] as X ∈ U iff κ ∈ j∗(X). Since V [c]
and V [c][G] have the same subsets of κ, we get that U = W . So we have seen every normal measure
on κ in V [c][G] was already in V [c]. Thus, V [c][G] has at most (22

κ

)V [c] = (κ+)V [c][G] many normal
measures on κ. �

This result was improved even further, to get that the number of normal measures can be
anything you please.

Theorem 21 (S. Friedman–Magidor). Assume GCH. Suppose κ is measurable and let µ ≤ κ++

be a cardinal. Then there is a cofinality preserving forcing extension in which there are precisely µ
many normal measures on κ.

We won’t prove this result, as it is highly nontrivial and requires technology well beyond the
scope of this course.

2In fact, we only need Ṙ to be forced to be δ-strategically closed, a weaker notion. But the forcings we work with
will have the stronger property.
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3. Prikry forcing and the singular cardinals hypothesis

We saw in part 2.2 that the behavior of the continuum function on the regular cardinals is
flexible. Any reasonable behavior is consistent with ZFC. But we passed over in silence the issue
of what happens with singular cardinals. Now we will return to that issue.

Observe that we may easily arrange so that GCH fails at singular µ. For instance, we can force
to make 2κ > µ+ for some regular κ < µ, thereby ensuring that 2µ ≥ 2κ > µ+. A less trivial, and
hence more interesting, question is whether µ can be strong limit but GCH fails at µ.

Definition 22. The singular cardinals hypothesis SCH asserts that if µ is a singular strong limit
then 2µ = µ+.

It is immediate that GCH implies SCH, so SCH is consistent with ZFC. Is it consistent that SCH
fails?

Theorem 23 (Gitik). Over ZFC, the failure of SCH is equiconsistent with the existence of a mea-
surable cardinal κ of Mitchell order κ++.

So the failure of SCH has large cardinal strength. In this section we will see a version of one
direction of this argument. Namely, we will see that if κ is supercompact then there is a forcing
extension in which κ is a singular strong limit with 2κ > κ+.

There are two steps in the argument. The first step is to get a forcing extension in which κ is
measurable and 2κ > κ+. The second step is to force over this model to make κ have countable
cofinality while preserving cardinals. We will treat the two parts separately.

We will start with the second part. Our tool will be Prikry forcing.

Definition 24. Let κ be measurable and let U be a normal measure on κ. Then the Prikry forcing
for U is the poset P = P(U) whose conditions p are of the form p = (s,A) where s is a finite subset
of κ and A ∈ U . Call s the stem of p and A the upper part of p. And P is ordered as (s,A) ≤ (t, B)
iff s ⊇ t and min(s \ t) > max t and s \ t ∈ B and A ⊆ B. We summarize the conditions on the
stem by saying that sp end-extends sq.

The way to think about Prikry forcing is: we are adding a cofinal ω-sequence to κ. If p = (s,A)
is a condition then the stem s is a partial approximation to the sequence and the upper part A is a
promise about where that sequence can grow. Stronger conditions grow the stem into the promised
land and restrict future promises.

Observation 25. P has the κ+-cc.

Proof. Because there are only κ many stems and if (s,A) and (s,B) are two conditions with the
same stem, then (s,A ∩B) is a condition below each of them. �

Lemma 26 (Prikry lemma). Let ϕ be a formula in the forcing language without free variables but
possibly with names. Then for any (s,A) ∈ P there is (s,B) ∈ P so that (s,B) decides ϕ.

Because (s,A ∩ B) is below both (s,A) and (s,B), this implies that any condition in P can be
extended to a condition which decides ϕ without changing the stem.

Proof. Let j : V →M be the embedding derived from U . Fix (s,A). Let D ⊆ P be the dense open
set of all q ∈ P so that q decides ϕ. For each t end-extending s, pick At so that (t, At) ∈ D, if such
exists. Define A∗ = {α < κ : ∀t end-extending s we have α > max t implies α ∈ At}. Let us see
that κ ∈ j(A∗). To see this, we want to consider an arbitrary t end-extending s so that κ > max t.
But in this case, t is a finite subset of κ, so we want to ask whether κ ∈ j(At). But this is just
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true, because At ∈ U . Thus, A∗ ∈ U . Now note that A∗ has the property that if (t, B) ≤ (s,A)
and (t, B) ∈ D then (t, A∗ \ (max t+ 1)) ∈ D, by the construction of A∗.

Let t end-extending s be arbitrary. Partition A∗ \ (max t+ 1) into three sets:

B+
t = {α < κ : (t ∪ {α}, A∗ \ (α+ 1) 
 ϕ},

B−t = {α < κ : (t ∪ {α}, A∗ \ (α+ 1) 
 ¬ϕ},

B?
t = {α < κ : (t ∪ {α}, A∗ \ (α+ 1) 6‖ ϕ}.

Let Bt be the unique of these three sets which is in U . Set A∗∗ = {α < κ : ∀t end-extending s we
have α > max t implies α ∈ Bt}. Then A∗∗ ∈ U . (Exercise: check this, by looking at a certain
diagonal intersection.)

Let (u,B) be an extension of (s,A∗∗) so that (u,B) decides ϕ, where we choose u to have minimal
length such that this happens. Suppose toward a contradiction that u 6= s. In this case, u = taα
for some t end-extending s. Because (u,B) decides ϕ and (u,B) is compatible with (s,A∗∗), we
get that either Bt = B+

t or Bt = B−t , depending upon which way (u,B) decides ϕ. Now note that
every extension of (t, A∗∗) is compatible with a condition of the form (taβ,A∗), where β ∈ Bt. But
then (t, A∗∗) must decide ϕ, since every condition extending t by lengthening the stem by 1 can be
extended to a condition with the same stem which decides ϕ. But this contradicts the minimality
of the length of u. So we must have that u = s. So we have found B ∈ U so that (s,B) decides ϕ,
completing the proof. �

Corollary 27. P does not add bounded subsets of κ. In particular, P does not collapse cardinals
≤ κ.

Proof. Let ẋ be a name for a subset of β < κ. Fix (s,A0) ∈ P. Given Ai, let Ai+1 ⊆ Ai be a set in
U so that (s,Ai+1) decides whether ı̌ ∈ ẋ. Such can be found by the Prikry lemma. And at limit
stages ` set A` =

⋂
i<`Ai. Then (s,Aβ) decides every member ẋ. So if G ⊆ P is any V -generic

then ẋG is already in V . �

I want to emphasize what we did here. Clearly, P is not even ω1-closed, since it adds a new
ω-sequence Previously, we used closure to ensure that we did not add subsets to small cardinals.
But that won’t work here, so we need to be smarter. This is where the Prikry lemma comes in.
It lets us conclude that our forcing doesn’t add new subsets to small cardinals, even though it has
very little closure. If you don’t have the upper parts of conditions then you will not be able to
make this conclusion.

Exercise 28. Consider a variant on Prikry forcing where conditions only have the stem sp. Show
that this forcing adds new reals. (Hint: you can define parity for ordinals: α is even iff there is an
ordinal β so that α = 2 ·β. Use this to show that this variant on Prikry forcing adds a Cohen real.)

Observation 29. Let G ⊆ P be V -generic. Then in V [G] there is a ω-sequence cofinal in κ.

Proof. Let 〈αn : n ∈ ω〉 be the sequence enumerating in increasing order the ordinals in the union
of the stems of conditions in G. By density, this sequence is cofinal in κ. Done. �

Altogether, what we have proved is the following.

Theorem 30 (Prikry). Let κ be measurable. Then there is a cardinal-preserving forcing extension
in which κ has countable cofinality. �



MATH655 LECTURE NOTES: PART 3 LARGE CARDINALS AND FORCING 11

In particular, this gives us an example of a forcing which preserves cardinals but does not preserve
cofinalities.

This completes part 2 of forcing the negation of SCH. We next want to look at the preparatory
forcing we will apply to κ before we hit κ with Prikry forcing. Recall that we want to force GCH
to fail at κ.

First, let us see why simply forcing with Add(κ, κ++) will not do. It may be that GCH holds
below κ. But then GCH holds on a set in U , where U is any normal measure on κ. So then we get
that GCH holds at κ in M , where j : V → M is the embedding via U . But M is correct about
subsets of κ, so this then implies that 2κ = κ+. So something must go wrong if we force with
Add(κ, κ++).

Exercise 31. Assume GCH. Show that forcing with Add(κ, κ++) for κ measurable will preserve the
inaccessibility of κ but will destroy the measurability of κ.

The solution is then to first establish the desired reflection of the failure of GCH. That is, before
we force GCH to fail at κ we first have to force it fail often below κ. Then we have a hope of making
it work.

Assume here that κ is κ++-supercompact. We will assume GCH in the ground model. (If GCH
doesn’t already hold, we can force it while preserving the partial supercompactness of κ.) Our
preparatory forcing will be A, the Easton support product of Add(α, α++) for α ≤ κ inaccessible.
For an inaccessible α ≤ κ, let Aα be the restriction of A to the coordinates < α. In particular,
A ∼= Aκ ∗Add(κ, κ++).

Proposition 32. After forcing with A, we have that κ is still κ++-supercompact and 2κ = κ++.

Proof. Let G ∗ H ⊆ Aκ ∗ Add(κ, κ++) be V -generic. That 2κ = κ++ in V [G][H] is clear. The
real work is in seeing that κ preserves its large cardinal properties. We saw in section 1 that if a
λ-supercompactness embedding lifts, then the lift is λ-supercompactness embedding. So we have
only to check that the κ++-supercompactness embedding j : V → M lifts. Remember the lifting
criterion: j : V → M lifts to j : V [G ∗ H] → M [K] if j′′G ∗ H ⊆ K. So we need to find an
appropriate M -generic K.

To see what to do, let’s analyze j(A). First, note that A itself is κ-closed, and so j(A) is j(κ)-
closed. Also note that Aκ has size κ and has the κ-cc. Then by elementarity we get that j(A) is the
Easton support product of Add(α, α++) at inaccessible α < j(κ), where this is defined in M . So we
can factor j(A) as Aκ ∗Add(κ, κ++) ∗B ∗Add(j(κ), j(κ)++)M , where B is a certain Easton support
iteration defined inside M . Note that M |= B is j(κ)-closed and that j(Aκ) = Aκ ∗Add(κ, κ++)∗B.

What is |j(κ)|V ? We can calculate this by using the fact that any α < j(κ) is of the form [f ]U ,
where U is the normal fine measure giving us the embedding and f : Pκκ++ → κ. There are

κ(κ
++)<κ = κκ

++

= 2κ
++

= κ+++

many such functions. So we can conclude that |j(κ)|V ≤ κ+++. Thus Q, as seen from V , is κ+++-
closed and has the κ+++-cc. So if we want to build K ⊆ Q which is M [G ∗H]-generic then we only
need to meet κ+++ many antichains. This can be done by κ+++-closure. So in V [G ∗H] we can
build such K. It’s now easy to see that j′′G ⊆ G ∗H ∗K, since j′′G = G. So j : V → M lifts to
j : V [G]→M [G ∗H ∗K].

We are not yet done. We still have to lift through to the last coordinate of the iteration j(A).
Note that j′′H ⊆ M [G ∗H] has, as seen from V , κ++. So by the closure condition on M [G ∗H]
we get that j′′H ∈ M [G ∗ H]. And it is directed by elementarity. Because V [G ∗ H] thinks
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that Add(j(κ), j(κ)++)M is κ+++-closed, this means that we can find a condition p is this poset
which is a lower bound for all of j′′H. We call such a p a master condition, because it is a single
condition which contains all the information about j′′H. Again using closure and chain condition
facts about the forcing defined in M as viewed in V , we can build a L ⊆ Add(j(κ), j(κ)++)M a
M [G ∗H ∗K]-generic. And we can ensure that p ∈ L. This then implies that j′′H ⊆ L, so we get
that j : V [G]→M [G ∗H ∗K] lefts to j : V [G ∗H]→M [G ∗H ∗K ∗L]. This embedding witnesses
that κ remains κ++-supercompact after forcing, and so we are done. �

Putting together this part with the previous part, we get the following.

Theorem 33. Suppose κ is κ++-supercompact. Then there is a forcing extension in which SCH
fails. �

To get this down to the optimal hypothesis (that κ is measurable with Mitchell order κ++)
requires a more sophisticated lifting argument. The other direction, that a failure of SCH implies
the consistency of a measurable cardinal with high Mitchell order requires other ideas. Rather than
being proved by forcing, it is proved by looking at inner models. To briefly explain why it cannot
be proved by forcing: If we could force to have a measurable cardinal κ in V [G], then in particular
we’d have that κ is inaccessible in V [G]. But being inaccessible is downward absolute, so κ would
have to be inaccessible in V . Now note that if ¬SCH is consistent then so is ¬SCH + there are
no inaccessibles. This can be proved by a class forcing argument destroying all inaccessibles while
preserving the failure of ¬SCH. So it could’ve been that V had no inaccessibles all along. So this
idea could not work.
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