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The important characterization of measurable cardinals was the following: κ is measurable iff κ
is the critical point of an elementary embedding j : V ≺ M . We saw that M and V agree up to
κ. Specifically, Vκ+1

M = Vκ+1 and κM ⊆ M . However, this agreement failed drastically once we
stepped beyond κ. For instance, M |= j(κ) is inaccessible, but in V we can see that j(κ) < (2κ)+,
and so is far from being inaccessible.

This theme suggests potentially new large cardinal notions. Can we ask for M to more closely
resemble V , thereby getting stronger notions? The answer is yes, and large cardinals given by
embedding characterizations have been fruitfully studied. Observe that if a large cardinal property
is defined by “κ is foo if κ is the critical point of an embedding j : V ≺ M so that M satisfies
bar and baz”, then κ is automatically measurable. So these large cardinal notions all exceed a
measurable in strength.

1. Supercompactness

In this section we will focus on supercompact cardinals, possibly the most important of these
large cardinals beyond measurables. Let me begin by defining supercompact cardinals in terms
of embeddings. Of course, this definition cannot be directly formalized within ZFC, since it is a
definition by quantification over a proper class. But we will later extract an equivalent formulation
via the existence of certain combinatorial objects, akin to the definition of measurable cardinals by
normal measures, giving us a satisfactory formalization within ZFC.

Definition 1 (Solovay–Reinhardt). Let λ be a cardinal. Say that κ is λ-supercompact if there is a
nontrivial elementary embedding j : V ≺M so that

(1) crit j = κ;
(2) λM ⊆M—that is, M is closed under λ-sequences; and
(3) j(κ) > λ.

If κ is λ-supercompact for all λ we say that κ is supercompact.

Let’s make some easy observations. First, note that if λ′ < λ then κ being λ-supercompact
implies κ is λ′-supercompact. Second, note that κ being measurable is equivalent to κ being
κ-supercompact. Indeed, we can extract more from the assumption that κ has a bit more super-
compactness. As a warm-up, let’s see that supercompact cardinals have Mitchell order > 1.

Proposition 2. Suppose κ is 2κ-supercompact. Then o(κ) > 1.

Proof. Let j : V ≺ M witness that κ is 2κ-supercompact. Define a normal measure U ⊆ P(κ) as
X ∈ U iff κ ∈ j(X). But because M is closed under 2κ-sequences, every ultrafilter on κ is in M .
So M |= κ is measurable and hence {α < κ : α is measurable} ∈ U , by the definition of U . So
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there is a normal measure on κ which concentrates on the measurable cardinals, witnessing that
o(κ) > 1. �

And now let’s push it as far as we can.

Proposition 3. Suppose κ is 2κ-supercompact. Then o(κ) = (2κ)+.

Proof. We proceed by induction. Suppose for α < (2κ)+ we have an ultrafilter Uα on κ so that Uα
which concentrates on the cardinals < κ with Mitchell order β for each β < α. But then Uα ∈M , so
M |= o(κ) ≥ α. Thus, using the same U as in the previous proposition we get that U concentrates
on the cardinals < κ with Mitchell order α. And this induction goes through for all α < (2κ)+, so
U witnesses that o(κ) is as large as can be, namely (2κ)+. �

We saw with measurable cardinals that they exhibit a degree of reflection, where certain proper-
ties of κ reflected down to smaller cardinals. Supercompact cardinals exhibit even more reflection.
Recall one instance of this reflection for measurable cardinals κ was that if GCH holds below κ then
2κ = κ+. Contrast that fact with the following proposition.

Proposition 4. Suppose GCH holds below κ where κ is λ-supercompact. Then GCH holds below λ.
In particular, if κ is supercompact and GCH holds below κ then GCH holds globally.

Proof. Let j : V ≺M witness the λ-supercompactness of κ. Because M is closed under λ-sequences
we can inductively show that Vα

M = Vα for α ≤ λ + 1. But by elementarity we have that
(2α)M = (α+)M for all α < j(κ). So then 2α ≤ (2α)M = (β+)M = β+, as desired. �

Proposition 5. Suppose κ is supercompact. Then Vκ ≺2 V .1

To prove this we will use the following fact, which I will leave to you as an exercise.

Exercise 6. Suppose κ > ω. Then Hκ ≺1 V .

Proof. Consider the Σ2 formula ∃x∀y ϕ(x, y, z), where ϕ only has bounded quantifiers, and fix
c ∈ Vκ. For the forward direction of the implication, suppose that Vκ |= ∃x ∀y ϕ(x, y, c), as
witnessed by a. Note that Vκ = Hκ, because κ is inaccessible. So by the exercise we get that
∀y ϕ(a, y, c). But then ∃∀y ϕ(x, y, c).

For the backward direction, suppose ∃x ∀y ϕ(x, y, c), as witnessed by a. Fix λ big enough so
that a ∈ Vλ. Now let j : V → M witness that κ is λ-supercompact. We then get, by the exercise
plus elementarity, that Vj(κ)

M |= ∀y ϕ(a, y, j(c)). But c ∈ Vκ so j(c) = c. So by elementarity we
get that Vκ |= ∃x ∀y ϕ(x, y, c), as desired. �

It will fall out of the combinatorial characterization of supercompactness that supercompactness
does not guarantee Σ3 reflection. And so this proposition is the best we can get.

This is as good an opportunity as any to pivot to talking about this characterization. The hint
of where to begin comes from seed theory. Recall the following fact we proved back in part 1.1.

Fact 7. Suppose j : V ≺ M is an ultrapower embedding and λ is an ordinal. Then λM ⊆ M iff
j′′λ ∈M .

If the embedding j : V ≺ M witnessing that κ is λ-supercompact is an ultrapower embedding,
then j′′λ ∈M . In fact, we don’t need to assume j is an ultrapower embedding to conclude j′′λ ∈M ,
since that direction of the argument works for any embedding. Let’s see what happens if we try

1Recall that M ≺2 V is formalizable as a single assertion in the language of ZFC.
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to use j′′λ as a seed for an induced factor embedding. That is, we want to define a measure U as
X ∈ U iff j′′λ ∈ j(X). Where should X live? We could define U to consist of subsets P(λ), since
j′′λ ∈ P(j(λ)). But we can refine this a bit. Note that |j′′λ| = λ < j(κ). So we can restrict U to
consists of sets of subsets of λ of size < κ, and still obtain a measure.

Definition 8. Let κ ≤ λ be cardinals. Then Pκλ = {X ⊆ λ : |X| < κ}.

Caution! With measurable cardinals, our measure U was on κ, and so elements of U were subsets
of κ, that is elements of P(κ). Here, we want our measure to be on Pκλ and so elements of U will
be subsets of Pκλ, that is elements of P(Pκλ).

Definition 9. Suppose j : V ≺ M has the property that it has critical point κ, j(κ) > λ, and
j′′λ ∈M generates all of M . Call such j a λ-supercompactness embedding.

By the seed lemma, λ-supercompactness embeddings are ultrapower embeddings. And by the
above re-cited fact we get that λM ⊆M and so they really do witness λ-supercompactness.

We want to characterize the measures which give rise to λ-supercompactness embeddings.

Definition 10. A κ-complete ultrapower U on Pκλ is fine if for each α < λ we have Xα = {s ∈
Pκλ : α ∈ s} ∈ U .

Definition 11. Suppose f : X → λ has domain X ⊆ Pκλ. Say that f is regressive if f(s) ∈ s for
all s ∈ X. And say that f is regressive on Y ⊆ X if f � Y is regressive.

Definition 12. An ultrapower U on Pκλ is normal if every f : Pκλ→ λ which is regressive on a
set in U is constant on a set in U .

Note that both of these definitions could be made for filters.
As with ultrafilters on κ, we can characterize normality in terms of closure under diagonal

intersections. To do this we need an appropriate definition of diagonal intersection for Pκλ.

Definition 13. Let 〈Xi : i ∈ λ〉 be a sequence of sets in Pκλ. Then the diagonal intersection of
this sequence is

4
i∈λ

Xi =

{
s ∈ Pκλ : s ∈

⋂
i∈s

Xi

}
.

There is a possible notational confusion here, since we also used 4i∈λXi to denote the diagonal
intersection along λ, rather than Pκλ. But it should be clear from context which is meant.

Exercise 14. Suppose F is a fine filter on Pκλ. Show that F is normal iff given any sequence
〈Xi : i ∈ λ〉 of sets from F we have that 4i∈λXi ∈ F .

Proposition 15. Suppose j : V ≺ M witnesses that κ is λ-supercompact. If U is the measure on
Pκλ generated by j′′λ, then U is normal and fine.

Proof. First let’s check fineness. κ-completeness is free. We want to see that j′′λ ∈ j(Xα). This
follows easily by elementarity

j(Xα) = {s ∈ Pj(κ)j(λ) : j(α) ∈ s}
plus the fact that α ∈ λ and so j(α) ∈ j′′λ.

To see normality, take f : Pκλ→ λ which is regressive on a set in U . Then, j(f)(j′′λ) ∈ j′′λ by
the definition of U and so there is α < λ so that j(f)(j′′λ) = j(α). But then f(s) = α on a set in
U . �
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Proposition 16. Suppose j : V ≺M is the ultrapower embedding by a normal fine measure U on
Pκλ. Then j′′λ = [id]U ∈M and λM ⊆M .

Proof. All we have to show is that j′′λ = [id]U . Recall that [id]U is a seed which generates all of
M via j. First, consider α ∈ λ. By fineness we have Xα ∈ U and so [id]U ∈ j(Xα). Therefore,
j(α) ∈ [id]U . Conversely, consider α ∈ [id]U . Then α = [f ]U = j(f)([id]U ) for some function
f : Pκλ → λ. Because j(f)([id]u) ∈ [id]U we get that f is regressive on a set in U . So there is
β < λ so that f(s) = β on a set in U . So α = j(f)([id]U ) = j(β). That is, α ∈ j′′λ. And so we are
done. �

This then gives us a ZFC-expressible characterization of when κ is supercompact: κ is supercom-
pact iff for every λ > κ there is a normal fine measure on Pκλ.

Now that we have this definition we can analyze it a bit more closely and see what it takes to
verify whether κ is λ-supercompact. This is verified by the existence of a certain subset of (Pκ),
which lives in Vλ+2. And all the objects we need to quantify over to check normality and fineness,
namely certain functions and sets over Pκλ live in Vλ+k for some finite k. (Exercise: compute the
minimal k that will do.)

Exercise 17. Show that the Σ2 properties are precisely those properties witnessed by Vαs. That is,
show that ϕ(x̄) is equivalent to a formula of the form ∃α ∈ Ord Vα |= ψ(x̄) iff ϕ is Σ2. (Hint: first
show that y = Vα is expressible as a Π1 assertion.)

From this exercise plus the preceding paragraph we conclude that “κ is λ-supercompact” is
expressible, modulo ZFC, as a Σ2 assertion. In fact, we can also express it as a Π2 assertion,
because every large enough Vα will witness that κ is λ-supercompact. To be more precise, we can
express that κ is λ-supercompact as: “∀α ∈ Ord if α ≥ λ+ 17 then Vα |= ∃ a normal, fine measure
on Pκλ”.

Altogether, we get that “κ is λ-supercompact” is ∆ZFC
2 , in the parameters κ and λ. Therefore,

“κ is supercompact” can be expressed in a Σ3 manner.

Exercise 18. Show that if κ is the smallest supercompact cardinal then Vκ 6≺3 V .

Exercise 19. Show that both “there is a proper class of inaccessible cardinals” and “there is a
proper class of measurable cardinals” are expressible as Π3 assertions. Show that neither of them
can be expressed in a Π2 nor a Σ2 manner.

The following exercise shows, on the other hand, a sense in which supercompactness can reflect
supercompactness.

Exercise 20. Let κ < λ and suppose κ is λ-supercompact and λ is supercompact. Show that κ is
supercompact.

This exercise is most easily proven by a reflection argument. But you can also prove it directly
using the normal fine measure characterization of supercompactness.

Exercise 21. Let κ < λ and suppose κ is λ-supercompact and λ is supercompact. Let µ > λ and
fix U a normal fine measure on Pλµ. For each x ∈ Pλµ with |x| ≥ κ fix Nx a normal fine ultrafilter
on Pκx. Define W ⊆ P(Pκµ) as

X ∈W ⇔ {x ∈ Pλµ : |x| ≥ κ and X ∩ Pκx ∈ Nx} ∈ U.

Show that W is a normal fine ultrafilter on Pκµ.
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Let us now see an alternative characterization of supercompactness.

Theorem 22 (Magidor). κ is supercompact iff for each α > κ there is β < κ and an embedding
k : Vβ ≺ Vα so that k(crit k) = κ.

Proof. (⇒) Fix α > κ. Let j : V ≺ M witness that κ is |Vα|-supercompact. Set ̂ = j � Vα. By

elementarity we get that ̂ : Vα ≺ Vj(α)M . But M is closed under |Vα|-sequences, so Vα = Vα
M and

̂ ∈ M . Therefore, M can see that ̂ is an elementarity and M |= ̂ : Vα ≺ Vj(α). Quantifying out
α, we get that M |= ∃ξ < j(κ) ∃k : Vξ ≺ Vj(α) so that k(crit k) = j(κ). Pulling this statement
backward along j we get that in V there is ξ < κ and an embedding k : Vξ ≺ Vα so that k(crit k) = κ.
So ξ is the desired β.

(⇐) Fix λ > κ. Take β < κ and k : Vβ ≺ Vλ+ω so that if δ = crit k then k(δ)κ. In then follows
that β = γ + ω where k(γ) = λ. Now observe that P(Pδγ) ⊆ Vβ and that k′′β ∈ Pκλ. Define
U ⊆ P(Pδβ) as

X ∈ U ⇔ k′′γ ∈ k(X).

By the usual argument, U is a normal ultrafilter over Pδβ. But also U ∈ Vβ and so by elementarity
k(U) is a normal ultrafilter over Pj(δ)j(β) = Pκλ. So κ is λ-supercompact. �

As an application of supercompactness, let us see that supercompact cardinals admit functions
that “guess” any object in the universe via a supercompactness embedding.

Theorem 23 (Laver). Suppose κ is supercompact. Then there is a partial function `
... κ → Vκ so

that for any x and any cardinal θ with x ∈ Hθ+ there is a θ-supercompactness embedding j : V ≺M
with j(`)(κ) = x. Such an ` is called a Laver function for the supercompact cardinal κ.

Proof. We build ` by transfinite recursion. We suppose ` � α has already been defined and we want
to define `(α). We have two cases to consider. The first is that there is some λ and some x ∈ Hλ+

so that x is not guessed by ` � α for any λ-supercompactness embedding for α. That is, there is no
λ-supercompactness embedding h : V ≺ M with critical point α so that h(` � α)(α) = x. In this
case, let λ be least such this happens and pick any x for this λ and set `(α) = x. If there is no such
λ and x, then we leave `(α) undefined.

We inductively do this for all α < κ to produce `
... κ→ V . I claim that `

... κ→ Vκ. That is, we
have to see that if there is λ with x ∈ Hλ+ so that no λ-supercompactness embedding h : V ≺ M
with critical point α < κ has h(` � α)(α) = x, then there is such a λ < κ. But observe that this
property of λ is Π2 with parameters from Vκ: α being λ-supercompact is ∆2, and checking whether
h(` � α)(α) = x is Σ0 in parameters x, ` � α, and α, and so saying there is x ∈ Hλ+ with no
λ-supercompactness embedding with h(` � α)(α) = x is Π2. So because Vκ ≺2 V there must be
such a λ ∈ Vκ.

Now let us check that ` really is a Laver function. Suppose toward a contradiction that it
is not, and let θ be a minimal failure. That is, there is x ∈ Hθ+ so that x 6= h(`)(κ) for any
θ-supercompactness embedding h : V ≺ N with critical point κ, but this is not true for any
cardinal < θ. Let j : V ≺ M be a (2θ)<κ-supercompactness embedding with critical point κ.
Then M is sufficiently closed so that it has all the supercompactness measures on Pκθ and all
functions Pκθ → Vκ as are in V . Thus, M must agree with V that x is not guessed by ` for any
θ-supercompactness embedding. More, M agrees that θ is minimal so that this happens. Now use
that ` = j(`) � κ, and get that j(`)(κ) is defined and so y = j(`)(κ) ∈ Hθ+ is not guessed by ` with
respect to any θ-supercompactness embedding.

Consider the embedding j0 : V ≺ M0 induced by the seed j′′θ using j. This is a theta-
supercompactness embedding and this M0 is the collapse of the seed hull of j′′θ. So by composing
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j with k, the inverse of the collapse map, we get j = k ◦ j0. Note that y is in this seed hull and,
since each ordinal < θ is in this seed hull, the seed hull correct computes the elements of Hθ+ , we
get that k(y) = y. In particular, it must be that y ∈M0. So

y = j(`)(κ) = k(j0(`)(κ)) = j0(`)(κ).

That is, we have seen that ` guesses y with respect to the θ-supercompactness embedding j0. But
M sees the measure which gives rise to j0, and M has sufficient closure to compute j0(`)(κ) = y.
This contradicts that y was not guessed in M by ` via any θ-supercompactness embedding. �

Other kinds of guessing principles have been studied by set theorists. One prominent one is
Jensen’s diamond principle, which the following exercises have you look at a bit.

Definition 24. Let κ be an infinite cardinal. Then ♦κ asserts that there is a sequence 〈Dα : α < κ〉
so that for any X ⊆ κ the set {α < κ : X ∩ α = Dα} is stationary. In particular, it must be that
Dα ⊆ α stationarily often.

Exercise 25. Show that if κ is measurable then ♦κ holds. (Hint: use the construction of a Laver
function as inspiration for your construction of a diamond sequence for κ.)

Exercise 26. Show that ♦ω1
implies the continuum hypothesis. More generally, show that ♦κ+

implies 2κ = κ+.

In fact, ♦ω1 is strictly stronger than CH, but proving this would require tools beyond our current
reach. One might wonder whether ♦κ is even consistent in general. Jensen showed that Gödel’s
constructible universe, the minimum inner model, satisfies ♦κ for every uncountable regular κ.

Exercise 27. Show that ♦ω1
implies there exists an ω1-Suslin tree, where a κ-Suslin tree is a tree

of height κ so that each branch and anti-chain of the tree has cardinality < κ.

♦ principles can be used for constructions, building up an object of size κ by smaller subobjects,
using the diamond sequence to anticipate future obstacles. The most notable example of this is
Shelah’s proof that ♦κ for all uncountable regular κ implies that every Whitehead group is free,
thus showing that Whitehead’s problem from abstract algebra consistently with ZFC has a positive
answer. (Shelah also showed that Whitehead’s problem consistently has a negative answer, so it is
independent.)
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2. An upper limit

The previous section suggests an ultimate limit to the embedding-based large cardinals. If
we get stronger and stronger principles by requiring the target model to contain more and more
information, then why not go all the way and ask for κ to be the critical point of an embedding
j : V ≺ V ?

There’s an obstacle to formalizing this.

Proposition 28. The only definable elementary embedding j : V ≺ V is the identity.

Proof. First let’s do the case where j is definable without parameters. Suppose j : V ≺ V is not
the identity. Let κ = crit(j). Note that κ is definable without parameters, being the critical point
of j. Let ϕ(x) be the formula which defines κ—that is, ϕ(x) holds iff x = κ. Then, by elementarity,
ϕ(x)V ⇔ ϕ(j(x))V . Note that on both sides of this we are evaluating in V , since V is both the
target and the domain of j. So ϕ(κ) holds iff ϕ(j(κ)) holds, contradicting that κ is the unique
witness of ϕ.

In other words, what we just showed is that if x is definable without parameters and j : V ≺ V ,
then j(x) = x.

Now let’s do the case j is defined using a parameter. That is, there is a set p and a formula
γ(x, y, z) so that jp(x) = y iff γ(x, y, p) is an elementary embedding from V to V . Suppose towards
a contradiction that jp is not always the identity. Let α be the minimal rank of a parameter p so
that jp is not the identity. And let κ be the smallest critical point of jp 6= id for p of rank α. Then
κ is definable without parameters. So by elementarity we get that jp(κ) = κ for all p of rank α.
But this has to be false for at least one p. Contradiction. �

So it would not be possible to talk about such embeddings in our context where classes are
just a way of speaking about certain formulae. With this obstacle in mind, we make the following
definition.

Definition 29. κ is a Reinhardt cardinal if κ is the critical point of an embedding j : Vµ ≺ Vµ
with µ > κ inaccessible.

This definition can be sensibly formalized within ZFC, since all the objects involved are sets.
The idea is, we think of Vλ as an approximation to the full universe of sets. But since it is only an
initial segment of the universe, we can look on it from above and see that the “classes” from Vµ’s
point of view are just sets in Vµ+1.

Nevertheless, Reinhardt cardinals are known to not exist.

Theorem 30 (Kunen). ZFC proves there are no Reinhardt cardinals.

We will use the following ZFC theorem. Here, P=κA is the collection of subsets of A of cardinality
κ.

Theorem 31 (Erdős–Hajnal, over ZFC). Every infinite cardinal λ has an ω-Jónsson function.
That is, there is a function f : P=ωλ→ λ so that for all y ∈ P=λλ we have f ′′P=ωY = λ.

Proof. Consider the equivalence relation ∼ on P=ωλ defined as x ∼ y if they agree on a tail—that
is there is α < supx so that x \ α = y \ α. Using AC, pick xE ∈ E for each ∼-equivalence class E.
For y ∈ P=ωλ, let Ey be the equivalence class for y. Now given y ∈ P=ωλ set g(y) to be the least
α ∈ xEy

so that y \ (α+ 1) = xEy
\ (α+ 1). That is, α is the least witness that y ∼ xEy

.
It now suffices to find A ∈ P=λλ so that every B ∈ P=λA has G′′P=ωB ⊇ A. If there is such

an A, then because it is in bijection with λ we can use that bijection and g to define the desired f .
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Suppose toward a contradiction there is no such A. Inductively, for each n ∈ ω, find An ∈ P=λλ
and αn ∈ λ so that

• An ⊇ An+1;
• αn+1 ∈ An \ (αn + 1); and
• αn+1 6∈ g′′P=ωAn+1..

We can continue the induction for each step by our assumption there is no such A. Now set
y = {an : n ∈ ω}. Pick m so that for some α ∈ supxEy

we have {αn : n ≥ m} = xEy
\ α Then

g({αn : n ≥ m}) = αm and so αm ∈ g′′P=ωAm. This contradicts the construction of Am. �

Proof of Kunen’s inconsistency theorem. Suppose toward a contradiction that j : Vµ ≺ M ⊆ Vµ is
an elementarity embedding with critical point κ. Set κ0 = κ and κn+1 = j(κn). Let λ = supn κn.
Observe that

j(λ) = j(sup
n
κn) = sup

n
j(κn) = sup

n
κn+1 = λ.

Indeed, λ is the least ordinal > κ which is fixed by j, because if κ < α < λ then κn < α ≤ κn+1

and so j(κn) = κn+1 < j(α).
Let us now see that j′′λ 6∈M and thus M 6= Vµ. Suppose otherwise toward a contradiction. By

the Erdős–Hajnal theorem pick f : P=ωλ → λ so that for all y ∈ P=λλ we have f ′′P=ωy = λ. By
elementarity and using that j(λ) = λ, we get that j(f) : P=ωλ → λ is a function so that for all
y ∈M ∩ P=λλ we have j(f)′′P=ωy = λ. In particular, since we get that j(f)′′P=ωj

′′λ = λ.
I claim that j(f)′′P=ωj

′′λ ⊆ j′′λ which would then imply that j′′λ = λ, which would be a
contradiction. To see this, pick s ∈ P=ωj

′′λ. Then there is t ∈ P=ωλ so that j(t) = j′′t = s. But
then

j(f)(s) = j(f)(j(t)) = j(f(t)) ∈ j′′λ. �

A couple remarks are in order. First, the axiom of choice was used essentially in the proof
of the Erdős–Hajnal theorem. A natural question is whether Reinhardt cardinals can be proved
nonexistent just from ZF. So far, no one has succeeded in doing so...

We can also ask how far down Kunen’s argument can be pushed. It’s straightforward to see
that his argument rules out an elementary embedding j : Vλ+2 → Vλ+2, where λ = sup jn(κ), since
ω-Jónsson function lives in Vλ+2. In other words, our requirement that µ > κ be inaccessible in
the definition of Reinhardt cardinals was overkill for what’s needed for Kunen’s theorem. But the
argument does not work if we lower the index. And so far no one has found an alternative argument
which works for these lower indices. Instead, set theorists have studied the rank-into-rank cardinals,
those λ so that there is an elementary embedding j : Vλ ≺ Vλ.
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