MATHG655 LECTURE NOTES: PART 1.0 INACCESSIBLE CARDINALS

KAMERYN J. WILLIAMS

This part of the course is about large cardinals, those cardinal numbers which exceed ZFC in
logical strength. They give a hierarchy of principles which can be used to measure the strength of
principles which exceed the standard axioms.

Why should we believe in the existence, or even just the consistency of large cardinals, if they go
beyond ZFC? That is an excellent question, which we can only get back to after having spent some
time studying large cardinals. For now, we will take it as a given that all of the principles we are
studying are consistent. (With the exception of Reinhardt cardinals, which we will see contradict
ZFC.)

For the first section of Part 1 we will cover inaccessible cardinals, near the weakest of the large
cardinals.

1. INACCESSIBLE CARDINALS, A BEGINNING
Let us begin with a useful bit of notation.

Definition 1. Let k, A be cardinals. Then
K< = sup K*.
pn<A
Definition 2 (Hausdorff). An uncountable cardinal k is inaccessible if it is a regular strong limit.
That is, cof kK = k and 2<% = k.

Proposition 3. Suppose k is inaccessible. Then for x C V,, we have x € Vi, iff |x| < k.

Proof. (=) Tt is enough to show that |V,| < k for @ < k. This can be proven by induction on «,
using that 2<% = k.

(<) Let x C V,, have || < k. Because k is regular, there is @ < & so that ranky < « for all
y €x. But thenz € V11 C V. O

Theorem 4. If k is inaccessible then V,, = ZFC.

Proof. We have seen that all the axioms except Replacement already hold. So let’s check Replace-
ment. Suppose z € V,, and F :  — V, is a function. Then |F"z| < || < k. So by the previous
proposition, F"x € V,,. ]

As a consequence of this theorem we can immediately draw two conclusions. First, ZFC does not
prove the existence of inaccessible cardinals. This is because if k is the least inaccessible cardinal
then V,, = ZFC + “there are no inaccessible cardinals”. Moreover, ZFC + “there is an inaccessible”
cardinal proves Con(ZFC), where Con(ZFC) is the formal statement asserting that ZFC is consistent.
This is just because if there is an inaccessible cardinal then there is a model of ZFC and if a theory
has a model then it is consistent.
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We summarize this second fact by saying that ZFC + “there is an inaccessible” exceeds ZFC
in consistency strength. In general, if S and T are two set theories, we say that S exceeds T in
consistency strength if S proves Con(ZFC). Thinking in terms of models: given a model of S we
can produce a model of T, but there is not a reverse process.’

We will treat ZFC as the base theory for our investigations, implicitly including it in our stronger
theories. For example, we will simply say that inaccessibles are stronger than ZFC in consistency
strength to mean the theory ZFC + “there is an inaccessible cardinal” proves Con(ZFC).

Assertions like “there is an inaccessible cardinal” as called large cardinal assertions. This is
not a formal term, but rather a know-it-when-you-see-it sort of thing. In general, a large cardinal
assertion asserts the existence of a cardinal x satisfying some property so that ZFC cannot prove
such k exists. So the large cardinals are large in the sense of consistency strength. And for most of
them, the largeness is also in terms of cardinality. We haven’t yet seen other large cardinal notions,
but we will later see that measurable cardinals exceed inaccessibles in consistency strength. This is
because if x is measurable there are lots and lots of inaccessible cardinals < k.

Once we have one large cardinal notion, we get stronger assertions by asserting the existence
of multiple cardinals of that type. For example, 2 inaccessibles are stronger than 1 inaccessible,
because if x is the second inaccessible then V,, = ZFC 4+ “there is 1 inaccessible”. In general, if
k is the (a + 1)-th inaccessible then V,, | ZFC + “there are o many inaccessibles”. So there is a
corresponding hierarchy of theories extending ZFC in consistency strength by asserting more and
more inaccessibles.

A bit more interesting is the following. Say that x is 2-inaccessible if k is inaccessible and a limit
of inaccessible cardinals.

Note that if x is 2-inaccessible then V,, = ZFC + “there are Ord many inaccessibles”. So 2-
inaccessibles are stronger than having multiple inaccessibles. And this is just the second step in a
hierarchy of larger and larger cardinals.

Definition 5. Define the a-inaccessible cardinals by induction on «.

e 1 is O-inaccessible if k is regular.
e kis (a4 1)-inaccessible if & is in inaccessible limit of a-inaccessible cardinals.
e For ~ limit, k is y-inaccessible if x is a-inaccessible for all a < 7.

Observe that 1-inaccessibility is the same as inaccessibility. And an easy induction shows that if
B < a then an a-inaccessible must also be S-inaccessible. (Exercise: do it!)

FEzxercise 6. Show that if kK < « then s cannot be a-inaccessible.

An alternative definition of the a-inaccessibles goes through the following operation on ordinals.
Let Reg denote the class of regular cardinals. If X is a class of cardinals, then « is a limit point of
X if k is the supremum of a set of cardinals from X. Given a class X of cardinals, let

I(X) = {a € X : a is an inaccessible limit point of X }.

IMassive caution here: this is an informal assertion meant to give some intuition, not a formal theorem. An
issue with trying to turn this intuition into a theorem is that you have cash out what a process is in this context. To
illustrate the problem: suppose that there is a model M of ZFC + “there is an inaccessible cardinal”. Now consider
the following ‘process’ to produce a model of ZFC + “there is an inaccessible cardinal” from a model of ZFC: given
N | ZFC, throw it away then output M. Your formal definition should exclude silly things like this.
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We can iterate this operation:

191 (X) = I(I(X))

MX)= () I*(X) (X limit)
a<A
Then I*(Reg) is the collection of a-inaccessible cardinals.
Say that x is hyper-inaccessible if k is k-inaccessible. These may seem like unfathomably large
cardinals that surely must be the boundary of consistency but they are actually rather far down in
the large cardinal hierarchy.

Exercise 7. Say that a cardinal x is Mahlo if the set of inaccessible cardinals < & is stationary in
k.2 Show that if x is Mahlo then it is hyper-inaccessible.® (Hint: Start by showing that the limit
points < x of I%(Reg N k) form a club subset of k for all & < k. Use this to show that  itself is
hyper-inaccessible.)

We have not yet seen much of the large cardinal hierarchy, but Mahlo cardinals are low in it.

2Recall that S C k if S intersects every club subset of k, where C' C & is club if it is closed and unbounded in k.
3In fact,  is a limit of hyper-inaccessible cardinals. As a more challenging exercise, try to prove this. (Hint: you
need to consider diagonal intersections of clubs. If (Cy : @ < k) is a sequence of subsets of k, then their diagonal
intersection is
AN Co={a<k:ac m Ca}.
a<k B<a
Show that if the Cy, are all club then so is C' = Aa<m Ca.)
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2. GOING DOWNWARD FROM INACCESSIBLES: TRANSITIVE MODELS OF ZFC

Given an inaccessible cardinal k we have that V is a model of ZFC. Let us apply the downward
Lowenheim—Skolem theorem to this structure. We get that for every infinite cardinal A < k there
is (MA, E)) < (Vi, €). Since each Ey must be well-founded—Dbeing the restriction of € to My—and
extensional, by the Mostowski collapse lemma there are transitive sets M) so that (M), €) = (M, €
). So there are transitive sets M) of every infinite cardinality A < xk which elementarily embed into
V,..* In particular, there are transitive models of ZFC of every infinite cardinality < .

Ezercise 8. Suppose M is a transitive set of cardinality A. Show that every x € M has cardinality
<A

What up with that? I thought ZFC asserts that every set has a powerset, and that Cantor’s
theorem implies that A and P(A) have different cardinalities. But if M is a countable transitive
model of ZFC then it has to contain both N and R, so how can they both be countable?

This mystery is known as the Skolem paradox.® To solve it we will need to look more carefully
at the logical structure of the assertion |A| < |P(A)|. And this is a good excuse to consider the
general phenomenon.

Definition 9. A formula ¢(Z) is called Aq if the only quantifiers in ¢ are bounded, that is of the
form Jy € z or Vy € 2.5

For the logicians in the room: this convention differs from that in model theory, where the
A formulae are the quantifier-free ones. In this context, this notion is too weak—you can say
basically nothing about set theory with just boolean operations. This is the right basic notion for
this context, as the proposition below illustrates.

Proposition 10. Let M be a transitive set, and suppose & € M. Let o(Z) be Ag. Then M |= (@)
iff (a).

This phenomenon is expressed by saying: Ao properties are absolute for transitive models, where
we often leave “for transitive models” implicit.

Proof. This proved by induction on formulae. The atomic case is immediate, because the member-
ship relation for M is the true €. The boolean cases are simple. So let us consider the bounded
quantifier step in the induction. That is, we assume that for all b,a in M that M = ¢(b,a) iff
p(b,a). We want to show that M = 3z € ¢ p(x,a) iff 3z € ¢ p(z,a). For the forward direction,
suppose b € ¢ witnesses that M = 3z € ¢ ¢(z,a). Then b witnesses 3z € ¢ ¢(x,a), using the
inductive hypothesis. The other direction is similar, using that M is transitive to know that b € ¢
isin M. |

Exercise 11. Show that all of the following properties can be expressed with Ay formulae, and so
they are all absolute for transitive models.

4An elementary embedding j : M — N is an embedding so j/M < N.
5The Skolem paradox is not a paradox in the sense of Russell’s paradox, where we get a logical contradiction.
Rather, it’s a paradox in that it’s a counterintuitive result we need to explain.

My favorite paradox of this flavor is what Wikipedia calls the potato paradox: You have 100 pounts of potatoes,
which are 99% water by weight. You leave them out and they dehydrate until they are only 98% water by weight.
How much do they weigh now? (The answer: 50 pounds. Whoa! (Exercise: explain this ‘paradox’.))

6These can be treated as abbreviations for 3y (y € zA...) and Vy (y € z = ...).


https://en.wikipedia.org/wiki/Potato_paradox
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e 1 is an ordered pair. o x Cuy.

e R is a relation. e xr=yUz.

e f is a function. e r=yNz.

o y= f(x). o x=1{.

e g=f=x. e r=yXz.

e B=f"A. e 1 is transitive.

e f is a one-to-one function. e 1 is an ordinal.

e fisonto B. e 1 is a limit ordinal.

e f is a bijection from A to B. e 1 is a successor ordinal.

Starting from the A, formulae, we can build upward to get a hierarchy which captures all
formulae in the language of set theory.

Definition 12. The Lévy hierarchy is defined as follows.

e The A( formulae are those with only bounded quantifiers. These are also called X and Il.
e A formula is X,y if it is of the form 3Ty where ¢ is I1,,.
e A formula is II,,4 if it is of the form VZy where ¢ is ,,.

Let us first verify that this hierarchy does indeed capture all formulae.

Proposition 13. Every formula in the language of set theory is equivalent, over ZFC, to one in
the Lévy hierarchy.

Proof. Proved by induction on formulae. The only substantive case is showing that bounded
quantifiers can be pulled inward. That is, we want to show that every formula of the form
Vo € a 3y ¢(x,y,¢) is equivalent to a formula of the form 3b Vo € a Jy € b ¢(z,y,¢).” The
backward direction of the implication is immediate. Let us see that the forward direction is given
by the Replacement axiom. So suppose that for each x € a there is y so that ¢(z,y,¢). Then by
Replacement there is some « so that for each z € a there is y € V,, so that ¢(z,y,¢). In other
words, V,, is our desired b. O

Remark 14. The axiom schema
Vz € aJy p(z,y,0)] = [Fb Ve €a Jy € b ¢(z,y,0)]

is known as the Collection schema. We have just seen that, over the other axioms of ZF, that
the Replacement schema implies the Collection schema. And the other direction of implication is
immediate, so the two schemata are equivalent, over the other axioms.

Project Idea 15. However, the axiom of Powerset is essential in proving the equivalence. In the
absence of this axiom, Collection is strictly stronger than Replacement. A possible project is to
investigate set theory without the axiom of Powerset.

Let us return to our mystery. The following are a pair of easy observations, using the absoluteness
of Ag properties.

Ezercise 16. Show that X, properties are upward absolute while II; properties are downward ab-
solute. That is, if transitive M = ¢(a) where ¢ is X1, then ¢(a). And if p(a) holds where ¢ is I3
and @ are in transitive M, then M = (a).

"It’s not necessary to also check the dual fact, using standard rules for quantifiers and negation.
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Let us think how to formally write down “there is no bijection from A to B”. We know that “f
is a bijection from A to B” is Ay, so this can be written in the form —3f (f, A, B) where ¢ is
an appropriate Ay formula. So by standard quantifier rules this can be written as Vf —(f, A, B).
That is, it can be expressed as a II; formula.

So we know that two sets having different cardinalities is downward absolute; if A and B have
different cardinalities (in V'), then no transitive M can think they have the same cardinality. The
Skolem paradox shos that the absoluteness does not go in the other direction, and so there is no ¥
way to express that two sets have different cardinalities. Let M |= ZFC is countable and transitive,
and suppose a,b € M are two sets which M thinks have different cardinalities. Since both a and
b are countable (in V'), there is a bijection between them. But M doesn’t see that bijection; it’s
missing too many sets.

This explains the mystery of the Skolem paradox. If M = ZFC is countable and transitive, then
it has sets it thinks are w and P(w). It is correct about which set is w, but it is not correct about
which set is P(w). Instead, P(w)™, what M thinks is the powerset of w, is seen externally to be
some countable collection of subsets of w. But M does not see the bijection witnessing that it is
countable, so it thinks that it is uncountable!

It gets better. Let x be the second inaccessible cardinal. Then there is countable transitive M
which elementarily embeds into V,;. Since V,, = “there is an inaccessible cardinal”, there is an
ordinal o € M so that M thinks « is an inaccessible cardinal. But externally, we can see that what
M thinks is a large cardinal is in fact some countable ordinal!

In short, models of set theory can be very, very, very wrong about cardinality. Indeed, in part 2
we will see how to expand the universe of sets to a larger universe, still satisfying ZFC. Moving to
such a “forcing extension” can collapse cardinals; it could be that s is an uncountable cardinal in
V but in this larger forcing extension k is a countable ordinal! Everything is relative; there is no
truth; the government did 9/11.

Having resolved the mystery, let us round up some positive absoluteness results, showing that
certain properties are absolute. That is to say, not everything is relative. We begin with perhaps
the most important absoluteness result.

Theorem 17. Well-foundedness is absolute for transitive models of ZFC. That is, if M = ZFC is
transitive and R € M is a binary relation then M = R is well-founded iff R really is well-founded.

Proof. Tt is enough to see that “R is well-founded” has both a ¥; and a II; characterization. For
the IT; characterization, simply note that the definition—every nonempty subset of the domain has
a minimal element—is already II;.

For the ¥ characterization, we will see that well-foundedness is characterized by the existence
of a ranking function. Say that a function p from the domain of a relation R to the ordinals is a
ranking function if x Ry implies p(z) < p(y). If a relation R admits a ranking function, then it
must be well-founded; otherwise, if D C dom R lacks a minimal element then p”D lacks a least
element, which is impossible. For the other direction, we build a ranking function for well-founded
R by transfinite recursion. Namely, recursively define p(z) = sup{p(y) +1 : y Rz}. Then this gives
a ranking function. Finally, observe that “p is a ranking function for R” is ¥;. ]

A couple remarks on this argument. First, note that we didn’t need the full strength of ZFC
to prove that well-foundedness is equivalent to having a ranking function. In particular, we didn’t
use the Powerset axiom. On the other hand, we did need some strength to carry out the transfi-
nite recursion argument. Indeed, well-foundedness is not absolute for transitive sets, without any
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assumption on what axioms they satisfy. (Exercise: find a transitive set ¢ with a binary relation
R €t so that t = R is well-founded, but R is actually ill-founded.)

Second, note that we used essentially the fact that being an ordinal is a Ag property to get
that having a ranking function is ;. That being an ordinal is Ag comes from the von Neumann
definition, plus the Foundation axiom. This is possibly the main reason why set theorists prefer
the definition of ordinals we do; the absoluteness of well-foundedness is super important, and this
definition lets us prove that.

Definition 18. Properties which have both ¥; and II; characterizations are known as A;. Strictly
speaking, we should really write AZFC, since we used ZFC to prove the two characterizations are
equivalent. More generally, if we used some other base theory T' we would call them AT. Then AT
properties are absolute between transitive models of T'.

The next couple exercises give some more absoluteness results.

Ezercise 19. Show that ordinal addition, multiplication, and exponentiation are absolute between
transitive models of ZFC.8

Ezercise 20. Show that the relation A |= T is absolute for transitive models of ZFC (without
Powerset). That is, if M = ZFC (minus Powerset) is transitive, A is a structure in M, and T € M
is a theory in the language of A, then M = [A =T iff A = T. (Hint: you want to find ¥; and II;
characterizations for the satisfaction relation A = T'.)

The next two exercises are about the existence of transitive models of ZFC and the consistency
of ZFC. Note that the arguments don’t use much about ZFC, and the same results hold if ZFC is
replaced by another reasonable set theory, e.g. one asserting the existence of large cardinals.

Ezercise 21. Show that (under the assumption that there is a transitive model of ZFC) there is a
transitive model M of ZFC so that M = “there is no transitive model of ZFC”.”

On the other hand, Con(ZFC) is an arithmetic statement, since syntactic statements about
formulae, proofs, etc. can be coded as statements about natural numbers.'® Since all transitive
models of ZFC contain w and the arithmetic operations on w are absolute, this means that arithmetic
operations are absolute for transitive models of (a fragment of) ZFC. Thus, if there is transitive
M = ZFC, then Con(ZFC) is true and so M = Con(ZFC).

Ezercise 22. Explain this. If M is a transitive model of ZFC so that M = “there is no transitive
model of ZFC”, how can M = Con(ZFC)?

This last exercise relates the set theorist’s Ay to the model theorist’s Ay by expanding the
language used.

8Indeed7 you need much less; the weak set theory KP suffices.

9n fact, more is true. There is a transitive model M |= ZFC so that no transitive N C M is a model of ZFC.
But proving this stronger fact would require going through Goédel’s constructible universe, which we will not cover
in this class.

10The original argument for this is due to Gédel. But to anyone who has used a modern computer this is clear.
All kinds of things can be represented as really long binary strings, which can be thought of as numbers written
in binary. So one just has to believe that the operations computers do on binary strings can be cast as arithmetic
operations on those numbers.
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Ezxercise 23. For each A formula ¢(Z) of arity n, let R, be a corresponding relation symbol of
arity n. Expand ZFC in this extended language by adding the following axioms for each A formula
©:
Vz ¢(Z) © Ry(Z).

Call this expanded theory ZFCT. Show that ZFC" is a conservative expansion of ZFC. (That is,
any theorem of ZFC" which is in the more limited the language of ZFC with just €, is already a
theorem of ZFC.) Show that over ZFCY, every ¥, (respectively, IT;) formula in the language with
just € is equivalent to Xy, (respectively, IT;) formula in the expanded language without any bounded
quantifiers.
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3. BACK TO LARGE CARDINALS

Having explored countable transitive models, let us return to large cardinals. First, let us see
that the inaccessible cardinals enjoy a nice characterization based on second-order logic. In part %
a couple exercises were about formulating axioms for R and N in second-order logic. We can also
formulate set theory in second-order logic. Here, I will use the convention that lowercase variables
refer to first-order objects, i.e. those in the domain of discourse, while uppercase variables refer to
second-order objects, i.e. subsets of the domain of discourse.

Definition 24. ZFC; is the formulation of ZFC in second-order logic. Specifically all axioms except
the Separation and Replacement schemata are the same. The two schemata are replaced with single
axioms, using second-order quantifiers. Namely, Separation becomes the single axiom

VeVY Izz={wez:weY}
and Replacement becomes the single axiom
Vo VF (Va3b (a,b) € F) = Jy y = F"'x.

Formulating set theory in second-order logic possibly feels a bit uneasy. We’re supposed to
axiomatize what sets are, while using a logic that seems to presuppose the existence of sets? There
may be some truth to that—it’s a sticky philosophical issue, and I shan’t wade into it—but we can
talk with ZFC as our background theory, and the universe of sets as a setting. If we want to ask
whether a transitive set M satisfies some second-order assertion, we take first-order variables to
range over the elements of M while taking second-order variables to range over the subsets of M.
There is no circularity with this approach.

Let us now characterize the inaccessible cardinals.

Theorem 25 (Zermelo). Let M be a transitive set. Then M |= ZFCq iff M =V, for inaccessible
K.

Proof. The backward direction is essentially the same arugment that V,; = ZFC. (Exercise: finish
the details!)

For the forward direction, suppose M |= ZFCy is transitive. First, I claim that M = V, for
k = OrdN M. That V,, C M is proved by inductively showing that V, € M for all a« < M.
The base case is trivial. The successor case follows from the second-order Separation axiom plus
Powerset; if V,, € M then P(V,) € M, because by second-order Separation M is correct about
powersets. And the limit case follows by Replacement; if V, € M for all @« < A < k then the
sequence (V, :a < \) € M and so Vi =,y Vo isin M.

We must also see that M C V.. For this, it suffices to prove that if z € M then rank x < k. This
follows from the usual ZFC argument that every set has a rank, which immediately applies in the
second-order context.

Now let us see k is an inaccessible cardinal. First, we will see & is regular, and so in particular a
cardinal. Suppose otherwise that there is « < k and G : @ — k with ran G cofinal in x. Then, by
second-order Replacement, ran G = G"a € V,; and so sup G"a = k € V,, a contradiction. Now let
us see & is strong limit. If not, there would be A < & so that 2* > k. But, because V,. satisfies the
Powerset axiom, we get that P(\) € V,,. So there is a surjection G : P(\) = k. By second-order
Replacement, G"P(\) = k € Vi, a contradiction. ]

Zermelo adopted an upward dynamic view for the universe of sets. Quoting from his 1930 paper,
as quoted in Kanamori’s book.
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The ‘ultrafinite antinomies of set theory’ that scientific reactionaries and anti-
mathematicians refer to so assiduously and lovingly in their campaign against set
theory, these seeming ‘contradictions’, are only due to a confusion of set theory
itself, which is non-categorically determined by its axioms, with particular repre-
senting models: What appears in one model as an ‘ultrafinite non-or metaset’ is
in the next higher one already a fully valid ‘set” with cardinal number and ordinal
type, and is itself the foundation stone for the construction of the new domain.
The unlimited series of Cantor’s ordinal numbers is matched by just as infinite a
double series of essentially different set-theoretic models, the whole classical theory
being manifested in each of them. The two diametrically opposite tendencies of
the thinking spirit, the idea of creative progress and of comprehensive completion,
which also lie at the root of the Kantian ‘antinomies’, find their symbolic repre-
sentation and symbolic reconciliation in the transfinite series of numbers based on
the concept of well-ordering. This series in its boundless progress does not have a
true conclusion, only relative stopping points, namely those ‘limit numbers’ [inac-
cessible cardinals] which separate the higher from the lower model types. And thus
also, the set-theoretic ‘antinomies’ lead, if properly understood, not to a restriction
or mutilation but rather to a presently unserveyable unfolding and enrichment, of
mathematical science.

Inaccessible cardinals can also be seen as embodying a certain reflection phenomenon. Recall
that a reflection principle is a principle asserting that some V,, resembles V in some way. For
example, the Lévy—Montague reflection principle, which is a theorem schema of ZFC, asserts that
for any single first-order property V has there are lots and lots of V,,s which also have that property.
The Powerset and Replacement axioms can be seen as asserting that Ord is inaccessible. Asserting
the existence of inaccessible cardinals is saying that there are ordinals which resemble Ord in this
way.

A natural question is then whether something like Zermelo’s theorem holds for first-order ZFC.
We know that there are transitive models of ZFC which aren’t even Vs, but maybe the only Vs
which satisfy all of ZFC are for s inaccessible. This is not the case.

Definition 26. Say that a cardinal x is worldly if V,, = ZFC.
Theorem 27. Suppose k is inaccessible. Then k is a limit of worldly cardinals.

Proof. Fix a < k. We will see that there is A > « so that V) <V, which is enough to prove the
result. This will be done by a variation of the Skolem hull argument used to prove the downward
Lowenheim—Skolem theorem.

Fix Skolem functions for V,, which exist because V.. can be well-ordered. Start with ag = a.
Given ay,, let a1 be least so that V,,, ., is closed under the Skolem functions with inputs from V.
Finally, set A = sup,, @,,. By a similar argument as before, V), C V,; satisfies the Tarski-Vaught test,

so Vi < V. Finally, note that cof A = w and so by the regularity of x it must be that A < x. O

Exercise 28. Formulate a definition of inaccessible cardinals that works without assuming the axiom
of choice. (The issue: if A < k has that its powerset cannot be well-ordered, then we can’t possible
have 2* < k.) Prove that inaccessible cardinals are limits of worldly cardinals without appealing
to the axiom of choice. (But where  is worldly if V,, = ZF.)
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4. EXERCISES
The first batch of exercises concern weakly inaccessible cardinals.
Definition 29. An uncountable cardinal x is weakly inaccessible if k is a regular limit cardinal.
Ezercise 30. Assume GCH. Show that & is inaccessible iff & is weakly inaccessible.!!

On the other hand, as we will see in part 2, it is consistent with ZFC that there are weakly
inaccessible cardinals below 2%0.

Exercise 31. Analogously to the a-inaccessible cardinals, define the hierarchy of a-weakly inacces-
sible cardinals. Working from the assumption that there is an a-weakly inaccessible cardinal for
every «, show that the smallest a-weakly inaccessible cardinal is not (« + 1)-weakly inaccessible.

The next exercises concern a connection to category theory.

Definition 32. A Grothendieck universe is a set U with the following properties.
e DU,
e U is transitive;
e If 2,y € U then {z,y} € U;
o If z € U then P(x) € U; and

e If TeU and {z;:i€ I} €U then ;. ;z; €U.

iel

Grothendieck universes were used for a formalization of category theory. We want to be able to
talk about things like the category of groups, or the category of sets, or so forth. But these are
all proper classes. We can avoid proper classes by instead fixing a Grothendieck universe U and
relativizing all the definitions to U. (And if we need to work higher and talk about U itself, than
we just assume we have an even bigger Grothendieck universe.)

Ezercise 33. Show that V,, is a Grothendieck universe.
Ezercise 34. Show that if k is inaccessible then V,, is a Grothendieck universe.

Ezxercise 35. Show that if U is an uncountable Grothendieck universe then U = V. for some k.

(Kameryn J. Williams) UNIVERSITY OF HAWAI'T AT MANOA, DEPARTMENT OF MATHEMATICS, 2565 MCCARTHY
MaLL, KELLER 401A, HoNoLuLu, HI 96822, USA

E-mail address: kamerynw@hawaii.edu

URL: http://kamerynjw.net

Uy fact, we can say more. If k is weakly inaccessible then L,;, the construction of Gédel’s constructible universe
up to k, is a model of ZFC. But proving this fact would require talking about L, which we won’t do in this class.
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