
MATH655 LECTURE NOTES: PART 0

KAMERYN J. WILLIAMS

Set theory is the study of the mathematical concept of set, defined by Georg Cantor as a
multiplicity considered as a unity. Despite the seeming simplicity of this concept, it is remarkably
general and all of mathematics can be coded in terms of sets. Let me give an incomplete list of
some of the themes of contemporary set theoretic research.

• Large cardinals are those cardinal numbers whose existence cannot be proven from the
ordinary axioms of mathematics. They form a linearly ordered hierarchy which provide us a
yardstick by which to measure the logical strength of principles which exceed the standard
axioms in strength.

• Descriptive set theory concerns the structure of real line, and of Polish spaces more
generally.

• Forcing was originally introduced by Paul Cohen to settle the consistency of the failure
of the continuum hypothesis. It has become our primary tool for proving independence
and consistency results. Starting with large cardinals, forcing is used to produce models
which satisfy such and such principle, giving an upper bound to the logical strength of that
principle.

• Inner model theory is, as the name suggests, the study of inner models, proper class-
sized models of set theory which are as “narrow” as possible. The first inner model was
Gödel’s constructible universe L, and later work has produced other canonical inner models,
especially canonical inner models which carry such and such large cardinal. Showing that
a principle implies the existence of such inner models is a common strategy to give a lower
bound to the logical strength of that principle.

In this course we will focus on two of these themes, namely large cardinals and forcing. My
hope is to introduce you to these two themes and give you a baseline to understand contemporary
research in these themes. In part 0 of this course we will set the groundwork to study these themes.

1. Cantorian set theory: Ordinals and cardinals

Before we get to the formal framework, let’s consider some of the most important objects of set
theory: ordinals and cardinals. We will start with a ‘naive’ treatment, and will revisit these objects
after we talk about the axiomatic approach. Let us start with ordinals. First, we need the very
important concept of a well-founded relation.

Definition 1. A relation R on a set A is well-founded if any nonempty X ⊆ A has an R-minimal
element. That is, there is x ∈ X so that no y ∈ X has y R x.

Definition 2. A well-order is a well-founded linear order.

Example 3. Any finite linear order is a well-order. The usual order on N is a well-order. The
standard orders on Z, Q, and R are not well-orders.

Date: January 9, 2019.

1



2 KAMERYN J. WILLIAMS

This lemma is very useful.

Lemma 4. A relation R is ill-founded iff it has an infinite descending chain x0 Rx1 Rx2 R· · · .

Proof. (⇐) Clearly {x0, x1, . . .} does not have a minimal element.
(⇒) Let <R denote the transitive closure of R, i.e. x <R y if there is a finite list

x = z0 R z1 R · · ·R zn = y.

Pick x0 ∈ domR so that R restricted to A0 = {y : y <R x0}, the predecessors of x0, is ill-founded.
Given xn and An the predecessors of xn, pick xn+1 R xn so that R restricted to An+1 = {y : y <R
xn+1} is ill-founded. This choice can always be made, because if R is ill-founded on An this has to
happen below some y R xn. Then x0 Rx1 Rx2 R· · · , as desired. �

Note that we appealed to choice to find the infinite descending chain. Indeed, this direction of the
equivalence is equivalent to a weak form of the axiom of choice, known as the principle of dependent
choices.

Definition 5 (Cantor). An ordinal or ordinal number is the ordertype of a well-order. That is, an
ordinal is an equivalence class of well-orders under the order isomorphism relation.

Ordinals will be denoted by Greek letters, usually though not exclusively toward the beginning
of the alphabet α, β, γ, . . ..

Definition 6. ω is the ordertype of N, with its usual ordering. 0 is the ordertype of the empty set
and for natural numbers n > 0, n is the ordertype of {0, . . . , n− 1}, with its usual order.

We can do arithmetic with ordinals. Let us start by adding 1. If α is an ordinal, then α + 1
is the ordertype of the order obtained from an taking something of ordertype α and adding a new
element to the end.

Definition 7. Let α and β be ordinals. Let A and B be disjoint well-ordered sets whose ordertypes
are, respectively, α and β.

(1) α + β is the ordertype of A ∪ B under the orders inherited from A and B and with a < b
for all a ∈ A and b ∈ B. (Think: A followed by B.)

(2) α · β is the ordertype of A × B under the lexicographic order : (a, b) ≤ (a′, b′) if a < a′ or
(a = a′ and b ≤ b′). (Think: B many copies of A.)

Exercise 8. Show these definitions are independent of the choice of A and B.

Remark 9. These operations work for ordertypes for linear orders in general, not just well-orders.

Exercise 10. Let η denote the ordertype of Q. Show that η = η + η = η + 1 + η.

Proposition 11. Let α and β be ordinals. Then α+ β and α · β are ordinals.

For notational simplicity, let us hereon identify ordinals with representatives of the ordertype,
rather than having to continually pick representatives and give them a new name, as we did above.

Proof. (α+β) Let X be a nonempty subset of α+β. If X∩α 6= ∅, then the α-least element of X∩α
is the (α+ β)-least element of X. If X ∩ α = ∅, then the β-least element of X is the (α+ β)-least
element of X.

(α · β) Let X be a nonempty subset of α · β, which we think of as the cartesian product α× β.
Let a0 be the α-least a ∈ α so that (a, b) ∈ X for some b. Now let b0 be the β-least b ∈ β so that
(a0, b) ∈ X. Then (a0, b0) is the (α · β)-th least element of X. �
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Exercise 12. Show that ordinal addition and multiplication are associative.

However, neither is commutative. For example, 2 + ω = ω 6= ω + 2. And 2 · ω = ω 6= ω · 2.
We will define ordinal exponentiation later, after we have had a chance to study transfinite

induction in some detail.

Definition 13. Let α and β be ordinals. Then α = β if there is an order-isomorphism between α
and β and α ≤ β if there is an order-embedding of α into β. Then α < β if α ≤ β and α 6= β.

Clearly, α = β implies α ≤ β and ≤ is transitive.

Theorem 14. The ordinals are well-ordered by <.

Proof. We will prove this as a series of lemmata, each of which is of independent interest.

Lemma 15. Let α and β be ordinals. Then α ≤ β iff α embeds onto an initial segment of β.

Proof by transfinite recursion. The backward direction of the implication is immediate. For the
forward direction, observe that we need only to see that if A ⊆ β then A, inheriting β’s order, is
order-isomorphic to an initial segment of β. We construct this order-isomorphism in our first use of
transfinite recursion. Here’s the idea: we want to map the least element of A to the least element
of β, the next element of A to the next element of β, and so on until we exhaust A. If A were
finite or isomorphic to ω, then this would just be like ordinary recursion on N. But it could be
that we have to go further. We can indeed go further; because β is well-ordered, there is always a
least element of β we have not already assigned to the range of the embedding. So this recursive
definition is well-defined, and gives rise to an order-isomorphism of A onto an initial segment of β.
To be explicit, the map is

f(a) = min{b ∈ β : ∀a′ < a f(a′) 6= b}. �

Here is an alternative argument, where the use of transfinite recursion is obfuscated.

Proof. Again, it is only the forward direction we must see, and it is enough to see that any A ⊆ β
embeds as an initial segment of β. Let X be the set of all a ∈ A so that there is no embedding of
A ↓ a = {a′ ∈ A : a′ ≤ a} onto an initial segment of β. We want to see that X is empty, so suppose
otherwise towards contradiction. Then because A is well-ordered X has a minimum element a. By
minimality {a′ ∈ A : a′ < a} embeds, say via f , onto an initial segment of β, call it I.

Claim 16. For all a′ < a, f(a′) ≤ a′.

Proof sketch. Suppose this isn’t true, and consider the least point where it fails. Show this leads
to a contradiction. �

As a consequence, I must be a strict initial segment of β. Otherwise, some a′ < a would get
mapped to a, but then f(a′) > a′, contradicting the claim. But now we can see how to embed A ↓ a
onto an initial segment of β: for a′ < a use map a′ to f(a′) and then map a to the least element
of β \ I. This contradicts the definition of a, so it must be that X is empty. That is, every initial
segment of A embeds onto an initial segment of β.

Claim 17. If I, J are initial segments of A and f, g are embeddings of, respectively, I, J onto initial
segments of β, then f and g agree on the intersection of their domains.

In particular, any initial segment I of A embeds uniquely onto an initial segment of β.

Proof sketch. Suppose they don’t agree, then consider the least point where they disagree. Show
this leads to a contradiction. �
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We can now see how to embed all of A onto an initial segment of β: given a ∈ A just map a to
f(a), where f embeds A ↓ a′ for a′ ≥ a onto an initial segment of β. This completes the proof. �

Hopefully this demonstrates the utility of transfinite recursion. We could avoid directly appealing
to this technique, but it came at the cost of having to repeatedly rely on the well-foundedness of
β, with proofs by contradiction inside proofs by contradictions. (It’s so bad, I made the inner
arguments exercises, rather than proving them myself for you!) On the other hand, with transfinite
recursion we get a straightforward construction of the embedding.

Let me introduce a bit of notation before the next lemma.

Definition 18. Let f : X → Y be a function and suppose X0 ⊆ X. Then f ′′X0 = {y ∈ Y : ∃x ∈
X0 y = f(x)} is the image of X0 under f . We use this notation, rather than f(X0) as you may
have seen elsewhere, as later in this course we will see lots and lots of sets whose elements are also
subsets. So we need different notation to distinguish the two concepts.1

Lemma 19. Let α be an ordinal. Then α 6< α.

Proof. Suppose otherwise. Then there is f : α→ α embedding α onto a strict initial segment. Let
a0 be the least element of A0 = α \ f ′′α. Given an the least element of An, set an+1 to be the least
element of An+1 = An \ f ′′An. Then the sequence 〈a0, a1, . . .〉 is an infinite descending sequence in
α, contradicting that α is well-founded. �

Lemma 20. If α ≤ β ≤ α then α = β.

Proof. Otherwise, if α < β then α embeds onto a strict initial segment of β. By composing this
embedding with the embedding of β onto an initial segment of α we get that α embeds as onto a
strict initial segment of itself, contradicting the previous lemma. �

Lemma 21. If α ≤ β then the embedding of α onto an initial segment of β is unique.

Proof. Otherwise, if e and ē are two different such embeddings then let a be the least point where
they disagree. But then both e and ē must map a to the smallest point not so far in the range,
contradicting that they disagree about where to send a. �

Lemma 22. Any ordinal α is isomorphic to the set of ordinals < α under <.

Proof. Let A be the set of ordinals < α. By the previous lemma, for each β < α there is a unique
bβ ∈ α so that β embeds onto {a ∈ α : a < bβ}. Let f(β) = bβ . Then f is an isomorphism from α
to A. �

Hereon we will tacitly identify α with the set of ordinals < α. Indeed, this identification will
follow from our later, more formal treatment. Note that under this identification α < β iff α ∈ β
iff α ⊆ β!

Corollary 23. < is well-founded on the ordinals. �

Lemma 24. The ordinals are linearly ordered by <.

Proof. Exercise. (Hint: use transfinite recursion.) �

As we have seen that < is a well-founded linear order, we are (finally!) done. �

1One also sees the notation f [X0] for the image of X0 under f in set theory texts.
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Definition 25. A limit ordinal is an ordinal which is the ordertype of a nonempty well-order
without a maximum element. A successor ordinal is an ordinal which is the ordertype of a nonempty
well-order with a maximum element.

Clearly, this divides the ordinals into three classes: limit ordinals, successor ordinals, and 0.

Exercise 26. Show that if α is a successor then there is β so that α = β + 1.

Exercise 27. Write down a limit ordinal which is a limit of limit ordinals. Write down a limit
ordinal which is a limit of limit ordinals which are themselves limits of limit ordinals. How much
further can you go in this vein?

Theorem 28 (Burali-Forti theorem). There is no set of all ordinals.

Proof. Exercise. Hint: this is similar to Russell’s theorem that there is no set of all sets. �

To distinguish collections which are too big to be sets, such as the collection of all ordinals or
the collection of all sets, we introduce the term class to refer to collections which may or may not
be sets. If a class is not a set we call it a proper class. When we regroup for an axiomatic approach
to set theory we will see how classes are formally treated and paradox avoided. For now, we will
proceed naively, keeping the following rules in mind.

• No proper class can be an element of other classes. This rules out a Russell-style paradox
applying to the classes.

• If x is a set and y ⊆ x then y is a set.
• If x is a set then

⋃
x and P(x) are sets.

• If I is a set and 〈xi : i ∈ I〉 is a sequence of sets then the cartesian product
∏
i∈I xi is a set.

Definition 29. Let S be a class of ordinals. Then the minimum of S, written minS, is the least
element of S, which exists because S is well-ordered.

Let S be a set of ordinals. Then the supremum of S is

supS = min{α : ∀β ∈ S β ≤ α}.

If supS ∈ S, then supS is also the maximum of S, written maxS. Note that maxS always exists
for finite S.

Exercise 30. Show that if S has no maximum element then supS = min{α : ∀β ∈ S β < α}.

Definition 31. Given a set A, the Hartog’s number for A, written ℵ(A), is the least ordinal α so
that there is no injection from α to A.

Proposition 32. ℵ(A) always exists.

Proof. Because the ordinals are well-ordered we must only see there is some ordinal with this
property. To see this: If α is the ordertype of some well-order of P(A) then by Cantor’s theorem
there is no bijection from A to α. �

Remark 33. This argument appealed to the axiom of choice, in the guise of assuming that P(A)
could be well-ordered. In fact, one does not need Choice to prove ℵ(A) always exists, as seen in the
following exercise.

Exercise 34. Suppose that A is infinite. Show that ℵ(A) is the supremum of the set of ordinals α
for which there is an injection from α to A.
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Definition 35. ω1 = ℵ(ω) = ℵ(N) is the least uncountable ordinal. Given any ordinal β ≥ 2, ωβ
is the least ordinal > ℵ(ωγ) for γ < β.

Written differently: ω1 is the supremum of the countable ordinals and ωβ is the supremum of
the ordinals of cardinality ωγ for γ < β.

One consequence of this definition, which should be made explicit, is that if β < ωα then there
is no injection from ωα to β. In particular, β is smaller in cardinality than ωα. For this reason,
the ωαs are initial ordinals—ordinals so that each smaller ordinal is smaller in cardinality. Observe
that the initial ordinals are the finite ordinals and the ωαs

Proposition 36. Every infinite ordinal is in bijection with some ωβ (or with ω).

Proof. Let α be the least infinite ordinal without this property. Consider the set S of ordinals γ so
that some β < α is in bijection with ωγ . Let δ = supS. Then α = ωδ, a contradiction. �

Exercise 37. Justify to yourself the assertion that S is a set.

We can think of ω0 as another name for ω, so that the above proposition can be stated without
the parenthetical. But no one ever actually writes ω0.

Exercise 38. Show that if A is a final sequence of ωα, i.e. A = {β : γ < β < ωα} for some γ, then
the ordertype of A is ωα.

To round out this discussion of ordinals before we move to cardinals, let us see how ordinal
addition and multiplication interact with cardinality. First, let us see that addition does not make
infinite ordinals larger in the sense of cardinality.

Exercise 39. Let α be an infinite ordinal. Construct a bijection between α and α + α. Conclude
that if at least one of α and β is infinite then there is a bijection from maxα, β and α+ β.

The same is true for multiplication; one can try to directly construct a bijection between α and
α · α, but a better approach is to go through a pairing function for ordinals.

Definition 40. Let α, β, γ, δ be ordinals. Say that (α, β) C (γ, δ) if

• maxα, β < max γ, δ; or
• The maxima are equal and α < γ; or
• The maxima are equal, α = γ, and β < δ.

It is clear that C is a well-order. Define the so-called Gödel pairing function g(α, β) to be the
ordertype of C below the pair (α, β).

Exercise 41. Justify to yourself that the collection of (δ, γ) C (α, β) is a set, and so g(α, β) really
is a map from pairs of ordinals to ordinals. And since C is a linear order, this immediately implies
that g is an injective order homomorphism.

Exercise 42. Show that g is an isomorphism.

Proposition 43. If α is an infinite ordinal then there is a bijection between α and α · α.

Proof. Because each infinite ordinal is in bijection with an ωα, by composing bijections it is enough
to show that this holds for the ωαs. So it is enough to see that if β, γ < ωα then g(β, γ) < ωα, as
then g is a bijection between ωα × ωα and ωα.

Suppose otherwise that this is not the case. Then let (β, γ) be least so that g(β, γ) ≥ ωα. Indeed,
it must be that g(β, γ) = ωα and so g(β, δ) < ωα for all δ < γ. Note that by the definition of C
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that g′′({β} × γ) must be a final segment of ωα. But then we get a bijection between ωα and γ
by sending ξ < ωα to the δ < γ which is the ξ-th element of g′′({β} × γ). This is a contradiction,
because there is no bijection from ωα to a smaller ordinal. �

Let us now talk about cardinals.

Definition 44 (Cantor). A cardinal or cardinal number is an equipotency class, that is, an equiv-
alence class of sets under the relation A ∼ B iff there is a bijection from A to B.

Given a set A, its cardinal number or cardinality is denoted |A|. We will tend to use Greek
letters from near the middle of the alphabet κ, λ, µ, . . . for cardinals.

Given two cardinals κ and λ, say that κ ≤ λ if given any K of cardinality κ and L of cardinality
λ there is an injection from K to L, and say that κ = λ if there is a bijection from K to L. And
κ < λ if κ ≤ λ but κ 6= λ.

Exercise 45. Show that the order relations on cardinals are well-defined, and don’t depend upon
the choice of K and L.

Theorem 46 (Cantor). For any set A, we have |A| < |P(A)|.

Proof. It is clear that |A| ≤ |P(A)|, as witnessed by the injection a 7→ {a}. To see they are not equal,
suppose towards a contradiction that f : A→ P(A) is a bijection. Now set D = {a ∈ A : a 6∈ f(a)}.
Let d = f−1(D). Then d ∈ D iff d 6∈ f(d) = D, a contradiction. �

Let us see that ≤ and = play nicely together.

Theorem 47 (Cantor–Schroeder–Bernstein). κ ≤ λ and λ ≤ κ iff κ = λ.

Proof. We want to show that if there are injections f : A → B and g : B → A then there is a
bijection between A and B. First, by instead considering the sets (g ◦ f)′′A ⊆ g′′B ⊆ A, observe
that it is enough to show that if X ⊆ Y ⊆ Z and |X| = |Z| then |Y | = |Z|

Lemma 48. Suppose F : P(Z)→ P(Z) is monotone—X ⊆ Y implies F (X) ⊆ F (Y ). Then F has
a fixed point, i.e. there is P ∈ P(Z) so that F (P ) = P .

Proof. Let T = {X ⊆ Z : F (X) ⊆ X}. Clearly Z ∈ T , so T 6= ∅. Let P =
⋂
T . Let’s see P is a

fixed point. First, take any X ∈ T . Then P ⊆ X so F (P ) ⊆ F (X) ⊆ X. So F (P ) ⊆
⋂
T = P , so

P ∈ T . And immediately F (F (P )) ⊆ F (P ), so F (P ) ∈ T . But then P ⊆ F (P ), so P = F (P ). �

Now define F : P(Z) → P(Z) as F (A) = (Z \ Y ) ∪ f ′′A, where f : Z → X is a fixed bijection.
It follows from f being one-to-one that F is monotone, so by the lemma let P be a fixed point of
F . That is, P = (Z \ Y ) ∪ f ′′P . Then

g(x) =

{
f(x) if x ∈ P
x if x 6∈ P

is a bijection from Z to Y . �

Definition 49. 0 = |∅|; for natural numbers n > 0, n = |{0, . . . n− 1}|. For ordinals α, ℵα = |ωα|.
In particular, ℵ0 = |ω| = |N|.

Note that since every set can be well-ordered, every infinite set is in bijection with some ℵα.

Proposition 50. The cardinal numbers are well-ordered by <.

Proof. Because the ordinal numbers are well-ordered. �
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Definition 51. If κ is a cardinal, then κ+ is the smallest cardinal > κ. Observe that ℵα+ = ℵα+1.

Exercise 52. Show that cardinal trichotomy, the assertion that the cardinal numbers are linearly
ordered, is equivalent to Choice. (Hint: the as-of-yet unproven direction follows once you know,
without using Choice, that every set has a Hartog’s number. This was an earlier exercise.)

Definition 53. A set is finite if its cardinal number is in N. Otherwise, it is infinite.

Proposition 54. If A is infinite, then ℵ0 ≤ |A|.

Proof. Define that A is Dedekind-infinite if there is an injection from A to a proper subset of A. I
claim that if A is Dedekind-infinite then N injects into A. To see this, let f : A→ A be an injection
witnessing that A is Dedekind-infinite, then pick a0 ∈ A to be a point not fixed by f . Such has to
exist as if f fixes all points then ran f = A, contrary to assumption. Then set a1 = f(a0). Given
an, set an+1 = f(an). We have that an+1 6= an because an = f(an−1), so if f(an) = an then f
would not be one-to-one. So n 7→ an injects N into A.

It remains only to see that A is infinite iff A is Dedekind-infinite. The contrapositive of the
backward direction is the observation that no finite set is Dedekind-infinite. (Exercise!) For the
forward direction, let < be a well-order of A. Without loss we may assume that < does not have
a maximum, because every ordinal is in bijection with some ωα, which is a limit ordinal. Define a
function f : A → A by setting f(a) to be the <-minimum element of {b ∈ A : a < b}. It is clear
that f is an injection from A to a proper subset. �

Remark 55. That every Dedekind-infinite set is infinite is provable without the axiom of Choice.
But it takes a small fragment of Choice to prove that every infinite set is Dedekind-infinite. For
example, it is consistent with ZF that there are amorphous sets, i.e. infinite sets whose subsets are
all finite or co-finite. These cannot be Dedekind-infinite.

Definition 56. An infinite set is called countable if its cardinal number is ℵ0. Otherwise, it is
called uncountable.

Remark 57. It’s a matter of convention whether finite sets are called countable or if countable refers
specifically to infinite sets. I personally am horribly inconsistent with my usage here, using either
convention depending on which is more convenient in a given context. It should always be clear
which is meant, however.

As befitting anything called “numbers”, we can do arithmetic with cardinal numbers.

Definition 58. Let κ and λ be cardinals. Pick K of cardinality κ and L of cardinality λ.

• κ+ λ = |K t L|, where K t L = (K × {0}) ∪ (L× {1}) is the disjoint union of K and L.
• κ · λ = |K × L|.
• κλ =

∣∣LK∣∣, where LK is the set of functions from L to K.

Exercise 59. Show that these are well-defined and don’t depend upon the choice of K and L.

Exercise 60. Check that the familiar rules for exponents κλ · κµ = κλ+µ and (κλ)µ = κλ·µ hold for
infinite cardinals.

An easy generalization of Cantor’s theorem yields that κλ > λ whenever κ ≥ 2. The same
is not true for addition and multiplication. Indeed, if at least one of κ and λ are infinite then
κ + λ = κ · λ = max{κ, λ}. To see this, it is enough to see that ℵα = ℵα + ℵα = ℵα · ℵα for all
ℵα. To prove this, first observe that ℵα + ℵα is the cardinality of ωα + ωα (the first + is cardinal
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addition and the second + is ordinal addition) and ℵα · ℵα is the cardinality of ωα · ωα (ditto but
for ·). This follows immediately from the definition of these arithmetic operations. But as we have
already seen, ωα is in bijection with ωα + ωα and with ωα · ωα.

But an important note: the proof this depends upon Choice. Indeed, Tarski showed that, over
ZF, κ · κ = κ for all infinite cardinals κ iff Choice. Jan Mycielski relates the following amusing
story about Tarski’s theorem:2 “Tarski told me the following story. He tried to publish his theorem
(stated above) in the Comptes Rendus Acad. Sci. Paris but Fréchet and Lebesgue refused to
present it. Fréchet wrote that an implication between two well known propositions is not a new
result. Lebesgue wrote that an implication between two false propositions is of no interest. And
Tarski said that after this misadventure he never tried to publish in the Comptes Rendus.”

Project Idea 61. Cardinal arithmetic without Choice.

More generally, we can define cardinal addition and multiplication for arbitrary families of car-
dinals.

Definition 62. Let 〈κi : i ∈ I〉 be a sequence of cardinals, with disjoint sets Ki of cardinality κi.
Then ∑

i∈I
κi =

∣∣∣∣∣⋃
i∈I

Ki

∣∣∣∣∣
∏
i∈I

κi =

∣∣∣∣∣∏
i∈I

Ki

∣∣∣∣∣ .
The product in the right half of the second line is the cartesian product.

Exercise 63. Show that
∑
i∈I κi = supi∈I κi.

An important consequence of these cardinal arithmetic facts is the following.

Proposition 64. Let κ, λ < µ be cardinals. Suppose that {Ai : i ∈ λ} is a collection of sets each
of cardinality ≤ κ. Then ∣∣∣∣∣⋃

i∈λ

Ai

∣∣∣∣∣ < µ.

In particular, a countable union of countable sets is countable.

Proof. ∣∣∣∣∣⋃
i∈λ

Ai

∣∣∣∣∣ ≤
∣∣∣∣∣⋃
i∈λ

Ai × {i}

∣∣∣∣∣ =
∑
i∈λ

|Ai| ≤
∑
i∈λ

κ = κ · λ = max{κ, λ} < µ. �

Once again, let me note an appeal to the axiom of choice. It’s consistent with ZF that ω1 is a
countable union of countable sets. Which I personally find weird as hell. (But note that it takes
only a weak fragment of choice to rule out this uneasy possibility.)

Let us end this section by stating a hypothesis of some importance.

Question 65 (Cantor). Because every set can be well-ordered, we know that 2ℵ0 must be some ℵα.
The continuum problem is to settle this question. The continuum hypothesis (CH) is the assertion
that 2ℵ0 = ℵ1. Observe that CH is equivalent to the assertion that there is no cardinal intermediate
between ℵ0 and 2ℵ0 .

2See http://www.ams.org/notices/200602/fea-mycielski.pdf.

http://www.ams.org/notices/200602/fea-mycielski.pdf
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The generalized continuum hypothesis (GCH), originally formulated by Hausdorff, is the assertion
that 2ℵα = ℵα+1 for all α. It is equivalent to the assertion that for any infinite cardinal there is no
cardinal intermediate between κ and 2κ.
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2. Transfinite induction and recursion

In this section we are introduced to one of our basic, but powerful tools. Let us begin by recalling
the familiar case of induction and recursion on N.

Fact 66 (Induction on N). Suppose S ⊆ N has the property that for all x ∈ N, if all y < x are in
S then x ∈ S. Then, S = N.

This can be put in the equivalent form: if 0 ∈ S and x ∈ S implies x+ 1 ∈ S, then S = N.

Proof. Suppose that S 6= N. By the well-foundedness of N, let x+ 1 be the least element of N \ S.
But then x ∈ S and so x+ 1 ∈ S, a contradiction. �

This is a very important property of the natural numbers. Indeed, Dedekind, Peano, and others
isolated it as the defining property of N, from which most of our theorems about N can be proved.
In general, this is how we think of induction—as a technique for proving things. On the flip side
of things is a technique for constructing objects, namely recursion. Or to put on a picky formalist
hat: induction is used to prove the existence of objects defined by recursion.

Example 67. Define the factorial function n! on N as: 0! = 1 and (n+ 1)! = (n+ 1) · n!. Then n! is
defined for all n ∈ N.

(Proof: we have seen that 0! is defined and that if n! is defined then (n + 1)! is defined. So by
induction n! is defined for all natural numbers.)

Recursion in general can be formalized as follows.

Fact 68. Consider a function g : N2 → N and let c0 ∈ N be fixed. Then there is a function
f : N→ N so that f(0) = c0 and for all n, we have f(n+ 1) = g(f(n), n+ 1).

Proof. Let S ⊆ N be the set on which the above definition of f is valid. Clearly 0 ∈ S. Assume
n ∈ S. But then f(n+ 1) is defined, since f(n+ 1) = g(f(n), n+ 1). So by induction S = N. �

Note that the key property about N which allows induction is that N is well-ordered. We can
generalize induction to work along the ordinals. This is known as transfinite induction.

Definition 69. Ord is the class of all ordinals. We saw earlier that Ord is not a set.

Fact 70 (Transfinite induction). Suppose that S is a class of ordinals with the property that for all
ordinals ξ if every η < ξ is in S then ξ ∈ S. Then S = Ord.

Proof. Exercise. �

There is an alternate formulation which is often useful.

Fact 71. Suppose that S is a class of ordinals which satisfies the following three properties:

(1) 0 ∈ S;
(2) If ξ ∈ S then ξ + 1 ∈ S;
(3) If λ is limit and ξ ∈ S for all ξ < λ, then λ ∈ S.

Then S = Ord.

Proof. Exercise. �

Both versions of transfinite induction also work if we confine to a set of ordinals, rather than
looking at the class of all ordinals. (Exercise: formulate this version of transfinite induction and
prove that it is valid.)

Let us see an example of how to use transfinite induction.
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Proposition 72. If α ≤ β then α+ γ ≤ β + γ and α · γ ≤ β · γ.

Proof. By induction on γ. We need to check the 0 case, the successor case, and the limit case. It’s
clearly true if γ = 0. If it’s true for γ, then the embedding from α + γ to β + γ is easily extended
to an embedding from α+ γ + 1 to β + γ + 1: just send the new element to the least unused point
in the target. Finally, suppose λ is limit and α + γ ≤ β + γ for all γ < λ. If it were not the case
that α + λ embeds into β + λ, then there would have to be a smallest point in α + λ so that the
embedding cannot be extended to have that point in the domain. But since α+λ can be identified
with the set of ordinals < α + λ, this amounts to saying that there must be γ < λ so that there
is no embedding from α + γ to β + λ. This would contradict the existence of an embedding from
α+ γ to β + γ. �

Just as induction on N allows definitions by recursion, so too does transfinite induction allow
transfinite recursion. We will have to be a bit loose with the formulation, since we don’t yet have
a good formal explication of what a class versus a set is.

First, a bit of notation. If f is a function and x ⊆ dom f then f � x is the restriction of f to x.
I use this notation because (1) it is standard among set theorists and (2) the other main notation
for function restriction uses a vertical bar, which is overused.

Definition 73. The principle of transfinite recursion asserts: if G is a class function then there is
a class function F with domain Ord defined as F (α) = G(F � α).

We will justify this principle later during the formal treatment. (We will need the axiom of
Replacement.)

Quite likely, this is not at all an enlightening thing to see. So let’s see some examples to get a
handle on it. Let’s start with alternative definitions of ordinal addition and multiplication. We will
also be able to introduce ordinal exponentiation.

Definition 74. We define α+ β, α · β, and αβ by transfinite recursion. α+ β is defined as:

• α+ 0 = α;
• α+ (β + 1) = (α+ β) + 1; and
• If λ is limit, then α+ λ = supβ<λ α+ β.

α · β is defined as:

• α · 0 = 0;
• α · (β + 1) = (α · β) + α; and
• If λ is limit, then α · λ = supβ<λ α · β.

αβ is defined as:

• α0 = 1;
• αβ+1 = (αβ) · α; and
• If λ is limit, then αλ = supβ<λ α

β .

Transfinite recursion says that each of these schemata defines a function on the ordinals.

Exercise 75. Show that this matches our previous definitions of ordinal addition and multiplication.
(Hint: use transfinite induction.)

Warning! Caution! Achtung! Cardinal and ordinal exponentiation are very far apart. For
instance, ωω is countable, while ℵ0ℵ0 is uncountable.

Lemma 76. Ordinal arithmetic has many familiar properties.
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(1) If β < γ then α+ β < α+ γ.
(2) If α < β then there is a unique γ so that α+ γ = β.
(3) If β < γ and α > 0, then α · β < α · γ.
(4) If α > 0 and β is any ordinal, then there are unique γ and unique δ < α so that β = α·γ+δ.
(5) If β < γ and α > 1 then αβ < αγ .

Proof. (1) By transfinite induction on γ. Trivial for γ = 0. For the successor case, we need only to
see that α+γ < α+γ+ 1. But this is obvious. For the limit case, suppose it fails for λ limit. Then
there must be a smallest β < λ for which it fails, at which point it reduces to the successor case.

(2–5) Exercise. (Hint: (3) and (5) are also proved by transfinite induction.) �

Theorem 77 (Cantor Normal Form). Every ordinal α > 0 can be uniquely represented in the form

α = ωη0 · k0 + ωη1 · k1 + · · ·+ ωηn · kn
where n ≥ 0 is finite, α ≥ η0 > η1 > · · · > ηn, and ki are nonzero finite ordinals.

Proof. First we see that there is some such representation by induction on α. Here, the base case
is α = 1, where 1 = ω0 · 1. For larger α, let η be largest so that ωη ≤ α. Then α = ωη · γ + δ.
Necessarily γ must be finite, so this is α = ωη · k for k ∈ ω. And by inductive hypothesis we know
that δ can be written in Cantor normal form, giving us Cantor normal for α.

Uniqueness is also proved by transfinite induction. (Do it!) �

Observe that it’s possible to have α = ωα. For example, this is true whenever α = ωβ . The
smallest ordinal with this property is denoted ε0. (With εξ being the ξth ordinal with this property.)

Exercise 78. Come up with an alternative characterization of ε0, from below.
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3. Some applications of transfinite induction/recursion

I thought it might be nice to see a couple applications of transfinite recursion/induction, before
we continue with the pure set theory. Both of these examples indicate one of the main uses of
ordinals: as indices for the steps in transfinite constructions.

Definition 79. A set P ⊆ R is perfect if it contains all of its accumulation points.

Theorem 80 (Cantor–Bendixson). Every closed set C ⊆ R can be decomposed into the disjoint
union of a perfect set and a countable set.

Corollary 81. The continuum hypothesis holds for closed sets. That is, any closed set of reals is
either at most countable or else equipotent with the reals.

Proof. Exercise! (Hint: show that the Cantor set can be injected into any nonempty perfect set.) �

Proof of the Cantor–Bendixson theorem. Given a set A ⊆ R, define the Cantor–Bendixson deriva-
tive of A, denoted A′, to be the set of accumulation points of A. Thus, if A is closed, then A′ is
also closed. Now define the following transfinite sequence of sets, using a closed set A:

• A0 = A;
• Aα+1 = (Aα)′; and
• If λ is limit, then Aλ =

⋂
α<λA

α.

Make a couple observations: First, Aα is always closed. Second, if Aα = Aα+1 then Aα is perfect.
In such a case, say that A stabilizes by α. For α least such this happens we say that A stabilizes at
α.

Claim 82. X \X ′ is at most countable. In particular, Aα+1 \Aα is at most countable.

Note that if x ∈ X \X ′ then there is an open neighborhood U 3 x so that U ∩ (X \ {x}) = ∅.
So there is a family U = {U} of pairwise disjoint nonempty open sets so that each x ∈ X \X ′ is in
exactly one U ∈ U . It follows from the fact that R has the ccc (= countable chain condition, i.e. any
collection of pairwise disjoint nonempty open sets must be countable) that U must be countable,
and thus X \X ′ is countable.

Exercise 83. Show that any separable topological space has the ccc. In particular, R has the
ccc. Show that a metric space has the ccc iff it is separable. Find a (necessarily non-metrizable)
topological space which has the ccc but is not separable.

Claim 84. No matter what closed A we start with, it always stabilizes by some countable stage.

Suppose A stabilizes at α. Then
〈
R \Aβ : β < α

〉
is a strictly increasing sequence of open sets.

Because R is separable, we thereby conclude that this sequence is countable. So α is countable, as
desired.

These two claims together give us the theorem. If A stabilizes by countable α then A = Aα ∪
(A \ Aα). The former is perfect while the latter is a countable union of countable sets, hence
countable. �

Exercise 85. Show that for all α < ω1 there is a closed set A so that A stabilizes at exactly α.

Now for a second application. Recall the following definitions.
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Definition 86. A sigma algebra on a set X is a nontrivial collection of subsets of X closed under
countable unions/intersections and complement.

Given a topological space X the Borel sigma algebra on X is the smallest sigma algebra on X
which contains all the open sets.

This definition is okay, I guess. But it doesn’t give you a handle on what the Borel sets are like.
Alternatively, we can define the Borel sets as those appearing in a certain hierarchy. We will work
in the context of perfect Polish spaces, as there is a nice theory in this context.

Definition 87. A Polish space is a complete, separable metric space. It is perfect if it has no
isolated points.

A classic example of a perfect Polish space is the real numbers R under the standard topology.
Another example is Borel space ωω. Points are ω-length sequences of finite ordinals. And the basic
open sets are Ns = {x ∈ ωω : s is a subsequence of x}, for finite length sequences of finite ordinals.
Rounding out the trio of well-known perfect Polish spaces is Cantor space ω2. Points are ω-length
binary sequences and the basic open sets are Ns = {x ∈ ω2 : s is a subsequence of x}, for finite
length binary sequences. (Note that Cantor space can be identified with P(ω).)

Following usual set theoretic practice, we will refer to elements of Borel space or Cantor space
as reals. That is, depending on context a real is an infinite binary sequence, an infinite sequence of
natural numbers, or a set of natural numbers. When studying the Borel structure of the reals, it is
equivalent to study the Borel structure of any perfect Polish space. This is due to the important
theorem, which we will not prove, that between any two uncountable Polish spaces is a Borel
isomorphism, a bijection which preserves the Borel structure. And Borel space and Cantor give
us a nicer combinatorial handle on things. (For a basic example of this, contrast how easy it is to
prove Cantor space is uncountable whereas showing that R is uncountable requires mucking about
in unpleasant details.)

Exercise 88. Show that Borel space and Cantor space are perfect Polish spaces.

Definition 89. Let X be a Polish space. Inductively along the countable ordinals define the
following hierarchy, the Borel hierarchy on X.

• The Σ0
0 sets are the open sets;

• The Π0
0 sets are the closed sets;

• The Σ0
α+1 sets are the countable unions of Π0

α sets.
• The Π0

α+1 sets are the complements of Σ0
α+1 sets. Equivalently, they are the countable

intersections of Σ0
α sets.

• For λ limit, the Σ0
λ sets are the countable unions of Π0

α sets for α < λ.
• And the Π0

λ sets are the complements of Σ0
λ sets.

• The ∆0
α sets are those which are both Σ0

α and Π0
α.

Remark 90. To be precise, this is actually the boldface Borel hierarchy.

Theorem 91. The Borel sets on X are precisely the sets which are Σ0
α (or Π0

α) for some countable
α.

Proof. For one direction of the inclusion, take a countable collection {Ai : i ∈ ω} of sets, each of
which is Σ0

αi for some countable αi. Let α = supi αi, which is countable. Then
⋃
iAi is Σ0

α. And it
is clear that this collection is closed under complement and contains the open sets, so it’s a sigma
algebra. Thus it must contain the Borel sets.
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For the other direction of the inclusion, inductively show that the Borel sigma algebra must
contain the Σ0

α sets for all countable α. �

Corollary 92. Let B be the collection of Borel sets on a perfect Polish space X. Then |B| = 2ℵ0 .

Proof. Because X is a perfect Polish space, there are 2ℵ0 many open sets on X. Now inductively
show that there are 2ℵ0 many Σ0

α sets on X for each countable α: at successor stages, there are at
most ℵ0 · 2ℵ0 = 2ℵ0 many Σ0

α sets. And similarly at limit stages there are at most ℵ0 · 2ℵ0 many
Σ0
λ sets. But then there are ℵ1 · 2ℵ0 = 2ℵ0 many Borel sets. �

This is just a hint of descriptive set theory, the structure theory of the Borel sets of Polish
spaces. This is an active and exciting area of study with connections to many different areas of
mathematics. It is ripe with possible topics for projects.
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4. Axioms of set theory

We now begin the formal set-up. We will have one primitive notion, namely set, and one primitive
relation on sets, namely the membership relation ∈. The axioms of Zermelo–Fraenkel set theory ZF
describe the basic properties enjoyed by sets. The first axiom, Extensionality, defines equality on
sets. Namely, two sets are equal if and only if they have the same elements. Formally:

∀x, y x = y ⇔ (∀z z ∈ x⇔ z ∈ y)(Extensionality)

The axioms of Pairing, Union, and Powerset describe ways new sets can be built up from old
sets. Pairing states that unordered pairs can be formed, Union states that unions can be formed,
and Powerset states that powersets can be formed.

∀x, y∃z z = {x, y}(Pairing)

As you can see, we have already gone beyond our one primitive relation. For the sake of human
readability, we will use many, many derived notions, usually without bothering to state them in our
minimalist language. For example, z = {x, y} is an abbreviation for ∀w w ∈ z ⇔ (w = x ∨ w = y).

∀x∃y y =
⋃
x(Union)

Here,
⋃
x = {a : ∃b a ∈ b ∈ x} is the union of x.

∀x∃y (∀z z ∈ y ⇔ z ⊆ x)(Powerset)

For any x, such y is called the powerset of x, which we write as P(x). The powerset of x is unique
by the axiom of Extensionality.

Exercise 93. Write formulae, in the language with only = and ∈, which express:

• x = {a : ∃b a ∈ b ∈ x};
• y = {z ∈ x : ϕ(z, a)};
• x = {y : ϕ(y, a)};
• z ⊆ x;
• z = x ∪ y; and
• x = ∅.

Exercise 94. Show that Extensionality plus Union plus Pairing prove that x ∪ y exists for all sets
x and y.

The axiom of Separation intuitively states that the universe of sets is closed under taking
subsets. Formally, Separation is an infinite schema of axioms, each one stating that the subset of x
consisting of those elements which satisfy ϕ always exists.

∀p̄ [∀x ∃y y = {z ∈ x : ϕ(z, p̄)}](Separation)

Here, ϕ ranges over those formulae in the first-order language with ∈ as the only non-logical symbol.
(Recall that = is considered a logical symbol; but even if we did not include it, it is definable from
∈.)

Exercise 95. Show that Unrestricted Comprehension, the axiom schema with instances

∀p̄ [∃x x = {y : ϕ(y, p̄)}]

is inconsistent with Extensionality.
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This exercise shows that in general {y : ϕ(y, p̄)} is not a set. Nevertheless, it is often useful to
speak of such collections. Our approach will be to treat the usage of these collections, known as
classes as abbreviations for certain formula. That is, if A = {y : ϕ(y)} then x ∈ A is an abbreviation
for ϕ(x). For example,

Ord = {x : ∀y, y′ ∈ x (y ∈ y′ ∨ y = y′ ∨ y′ ∈ y) ∧ ∀y ∈ x ∀z ∈ y z ∈ x}

is the class of all ordinals. So α ∈ Ord is an abbreviation for the formula asserting that α is an
ordinal.

Definition 96. V = {x : x = x} is the class of all sets.

There is an alternative approach to classes, which goes by the names of class theory or second-
order set theory, where classes are admitted as actual objects. Sets are then the classes which are
elements of other classes, while proper classes are those which aren’t members of any other class.
Axioms can be formulated for this approach, and this approach is consistent if and only if ZF is
consistent. We won’t take this approach in this course, but I’m happy to talk about it outside of
class—my dissertation work was on second-order set theory—and there are several good topics here
for a project.

Project Idea 97. Gödels–Bernays set theory GB is conservative over ZF. Indeed, if we augment
GB with the axiom of Global Choice to get GBC then GBC is conservative over ZFC, viz. ZF plus
the axiom of Choice. But GB and GBC aren’t the only second-order set theories which have been
studied. Kelley–Morse set theory KM is not conservative over ZFC. And there is a hierarchy of
theories intermediate in consistency strength.

The axiom of Infinity states that the natural numbers form a set. One way to characterize
the natural numbers is that they are the smallest collection which contains 0 and is closed under
successor. Since our only objects are sets, we must pick a set to be 0 and pick a function on sets to
be the successor function. There are many possible choices, but the standard pick is to have 0 be
the empty set and the successor of n to be n ∪ {n}.

∃x ∅ ∈ x ∧ ∀y ∈ x (y ∪ {y}) ∈ x(Infinity)

Note that this is our first axiom which asserts the existence of a certain set, rather than asserting
that such and such holds of all sets. Indeed, Infinity is the only axiom of ZFC which starts with an
existential quantifier rather than a universal quantifier.

After we have defined what it means for a set to be infinite, we will see that the set whose
existence Infinity asserts really is infinite.

The axioms we have seen so far—Extensionality, Pairing, Union, Powerset, Separation, plus
Infinity—constitute Zermelo set theory Z.

Before we can state the next two axioms, we will need to be able to talk about functions and
relations.

Definition 98 (Kuratowski). The ordered pair (x, y) is the set {{x}, {x, y}}.

Exercise 99. Show that (a, b) = (c, d) if and only if a = b and c = d.

Definition 100. The cartesian product x× y of x and y is the set {(a, b) : a ∈ x ∧ a ∈ y}.

Exercise 101. Show, using the axioms we have seen so far, that x× y is always a set if x and y are
sets.
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Definition 102. A (binary) relation is a set of ordered pairs. We say R is a relation on A if
R ⊆ A × A. More generally, R is a relation between A and B if R ⊆ A × B. The domain of R is
domR = {a : ∃b ∈

⋃⋃
R (a, b) ∈ R} and the range of R is ranR = {b : ∃a ∈

⋃⋃
R (a, b) ∈ R}

A function f is a relation so that (a, b), (a, b′) ∈ f implies b = b′. For a ∈ dom f we write f(a)
for the unique b so that (a, b) ∈ f . We write f : A→ B to express that dom f = A and ran f ⊆ B.

Exercise 103. Suppose f, g are functions. Show that f = g (as sets) if and only if f and g have the
same domain and for every a in their domain we have f(a) = g(a).

Exercise 104. Those of an algebraic bent often dislike this definition of a function, as it does not
require a function to come along with a codomain. Give a alternative definition of a function with
codomains, so that functions f and g are equal (as sets) if and only if they have the same domain
and codomain and f(a) = g(a) for all a in their domain.

One important class of functions are the sequences.

Definition 105. A sequence is a function whose domain is an ordinal. The length of the sequence
is its domain. We often write 〈xi : i ∈ α〉 for the sequence i 7→ xi with domain α.

From our definition of relations we can define partial orders, linear orders, well-orders, and so
on in the usual way.

The axiom of Choice asserts that every set can be well-ordered.

∀x∃y y is a well-order on x(Choice)

Theorem 106 (Zermelo). Over Zermelo set theory, Choice is equivalent to the assertion that every
nonempty set admits a choice function: for every x 6= ∅ there there is a function f so that for all
y ∈ x we have f(y) ∈ y.

Exercise 107. Prove Zermelo’s theorem.

Project Idea 108. Several other statements are also equivalent to Choice. Investigate some of them.

Project Idea 109. There is a zoo of choice principles which are weaker than the full axiom of Choice
but are not implied by ZF. For example: countable choice, the principle of dependent choices, the
boolean prime ideal theorem. Investigate some of these principles.

Several mathematicians independently observed that Zermelo set theory, even with the addition
of Choice, is insufficient for set theoretic purposes. We are not yet in a position to see what those
insufficiencies are, but we can see the axioms that provides the fix. Replacement asserts that the
image of a set under a definable class function is a set. Like Separation, Replacement is actually a
schema of assertions, one for each formula ϕ of appropriate arity. Below, ∃!y expresses that there
is a unique y such that blah blah.

∀p̄ [(∀x∃!y ϕ(x, y, p̄))⇒ ∀a∃b ∀x ∈ a∃y ∈ b ϕ(x, y, p̄)](Replacement)

The utility of Replacement will become increasingly clear as this course progresses.
You can also phrase Replacement using the language of classes. In this formulation, Replacement

is a schema over the class functions F asserting

∀a∃b ∀x ∈ a F (x) ∈ b.
The final axiom of ZFC, the axiom of Foundation, gives a restriction on which sets can ex-

ist. Abraham Fraenkel proposed that there should be an axiom of restriction—“das Axiom der
Beschränktheit”—which asserts that the only sets which exist are those which must be in every
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model of the axioms. Those of you with a background in logic will know that the Löwenheim–
Skolem theorem rules out the possibility of such an axiom. Nevertheless, a weak version of this
axiom, originally due to John von Neumann, can be expressed. Foundation asserts that the mem-
bership relation is well-founded. This rules out, for example, the existence of a Quine atom, viz. a
set a so that a = {a}.

∀x (x 6= ∅ ⇒ ∃y ∈ x y ∩ x = ∅)(Foundation)

Together, these axioms make up ZFC. If we don’t include Choice, we get ZF.

4.1. Believing the axioms. I won’t spend any class time attempting to justify these axioms to
you, though we will see why they are useful as the course progresses. You’re welcome to accept them
as stipulations if you are so inclined. But if you’re like me and you think mathematics has meaning
and isn’t mere symbol pushing, then you’ll want to know why you should believe the axioms.
Penelope Maddy has an excellent paper about that question, appropriately titled “Believing the
axioms, Part I”. (Part II is also good, but is focused on axioms which go beyond ZFC.) I’m also
happy to recommend further papers or talk to you outside of class. But my advice would be to first
focus on understanding the mathematics, before delving into the philosophical side.
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5. Ordinals, cardinals, and transfinite recursion: take two

We return to these topics to give them a formal basis in ZFC.

Definition 110. A set x is transitive if every element of x is a subset of x. That is, x is transitive
if ∀y ∈ x∀z ∈ y z ∈ x.

Definition 111 (von Neumann). An ordinal is a transitive set which is linearly ordered by ∈. The
order relation < on the ordinals is then ∈.

Observe that, due to Foundation, a set is linearly ordered by ∈ if and only if it is well-ordered
by ∈. So the von Neumann definition of an ordinal picks out a canonical representative from each
ordertype for a well-order. As such, all our previously proven results about ordinals immediately
apply to this new definition.3

But first we have to see that every well-order is isomorphic to some (von Neumann) ordinal. This
follows from the Mostowski collapse lemma. But before we can prove it we must revisit transfinite
recursion and put it on a firm foundation.

Definition 112. A class relation R is set-like if for every x the collection {y : yRx} of predecessors
of x is a set.

For example, the class of ordinals, under its usual order, is set-like. There are a proper class of
ordinals, but beneath any particular ordinal there is only a set of ordinals. Compare to the natural
numbers—there are infinitely many natural numbers, but each natural number has only finitely
many predecessors.

Theorem Schema 113 (Transfinite Recursion). Suppose that G is a class function and R is a
well-founded, set-like class relation. Then there is a class function F so that for each x ∈ domR
we have F (x) = G(F � x), where F � x is the restriction of F to the set of R-predecessors of x.

Before proving this, I want to remark on the formal underpinning. Formally, this is not a single
theorem but rather a schema for producing theorems. If we take formulae γ and ρ defining appro-
priate classes G and R then apply the argument we get formula ϕ which defines the class F . The
reason for needing this to be a schema is that classes are metatheoretic objects—recall, they are
just shorthand for certain formulae—so we cannot directly quantify over them. But it’s cleaner
and more intuitive to speak about classes rather than formulae. A rule of thumb: it’s okay to talk
about individual classes, whether via a schema or a specific class such as the class of ordinals or
the class of groups. But it’s not okay to quantify over classes. (At least in the framework of ZFC.
There are alternative frameworks which do allow this.)

Also, note that it is harmless to assume that the domain of G is V , the class of all sets. Often,
we are only interested in G being defined on certain sets, e.g. on the ordinals. But we can always
extend the definition of G to cover all sets. Clearly, the definition of F is unaffected by what G
does on the side.

3Why use this definition? First off, it’s pretty. Second, this gives us a logically simple definition of an ordinal.
Cantor’s definition requires quantifying over the whole universe of sets—to say such and such is well-founded is an
unbounded universal quantifier. But von Neumann’s definition only requires quantifying over x itself. This technical

fact is of supreme importance to set theoretic practice. In particular, we will eventually use it to see that being well-

founded is absolute—whether a relation is well-founded doesn’t depend on what universe you evaluate the sentence
in. On the other hand, we will see that, for example, being a cardinal is not absolute; different universes of sets can

disagree about what sets are cardinals.
We are still a long way off from this, however.
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Moreover, I want to highlight that this schema is often applied in the case where G and R are
sets. This follows from the version stated above by extending G arbitrarily outside of the set of
interest.

Proof. We define F as follows: F (x) = y if there is a set-sized function f whose domain includes
{z : z ≤R x}, where <R is the transitive closure of R which obeys the recursive definition of F
on its domain. (That is, f(x) = G(f � x) for x ∈ dom f .) We must see two things: that F (x) is
defined for all x ∈ domR and that F (x) is uniquely determined.

First, suppose it were the case that F (x) were not defined for all x ∈ domR. Then there would
be a minimal x ∈ domR so that F (x) is not defined. In particular, for each z <R x we have that
F (x) is defined. Since R is set-like, by Replacement there is a set-sized function f so that for all
z <R x we have f(z) = F (z) satisfies the recursive definition for F . But then we can extend f by
defining f(x) = G(f � x). But then F (x) is defined, a contradiction.

To see that F (x) is uniquely determined, suppose x were a minimal counterexample to uniqueness
and produce a contradiction, similar to before. (Exercise: do it!) �

Notice that we used Replacement in order to define F . It is natural to ask whether we actually
need Replacement to prove transfinite recursion.

Exercise 114. Show that over the axioms of ZFC without Replacement that the schema of Re-
placement is equivalent to the schema of transfinite recursion. (Hint: consider an instance of
Replacement, i.e. you have a set a and a class function F . You want to use transfinite recursion to
define a set function f so that f = F � a. You need a well-founded relation to do recursion on, so
start by well-ordering a.)

As an example of the use of transfinite recursion, let’s prove the following very important lemma.

Theorem 115 (Mostowski collapse lemma). Let R be a well-founded relation on a set D. Then
there is a unique transitive set T and an epimorphism e : (D,R)→ (T,∈). We call T the collapse
of R and e the collapse map. If R is moreover extensional—if x, y ∈ D have the same set of
R-predecessors then x = y—then e is moreover an isomorphism. In particular, if R is a well-order
then it collapses to a unique ordinal.

This also works if R is a set-like well-founded class relation on a class D.

Proof. Recursively define e according to the rule e(x) = {e(y) : y Rx}. Then e exists by transfinite
recursion. By construction y R x implies e(y) ∈ e(x). And if R is extensional we can reverse the
implication. �

To end out this section, let us give a new definition of cardinals. We will define them as certain
ordinals.

Definition 116. A cardinal is an initial ordinal. That is, an ordinal α is a cardinal if there is no
injection from α to a smaller ordinal.

Definition 117. Let α be an ordinal. Then ℵα = ωα.

Observe that our definition of ωα immediately carries over from the Cantorian context. For example,
ω1 is the least (von Neumann) ordinal which is uncountable. Equivalently, ω1 is the set of countable
ordinals.

There is one infelicity in defining the cardinals as certain ordinals. Namely, there is now an
ambiguity in the arithmetic operations. When we say α + β, do we mean ordinal addition or
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cardinal addition? Following standard practice, we will not make notational distinction between
the two. Which is meant should be clear from context. And in case it is not clear, we will explicitly
say what is meant.

One way to distinguish the two for initial ordinals is by using ℵα when we want to think of the
set as a cardinal, and using ωα when we want to think of it as an ordinal. But this convention is
not universally followed, and many set theorists will use ωα for both uses.
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6. The cumulative hierarchy

We define by transfinite recursion on the ordinals the von Neumann hierarchy :

V0 = ∅;
Vα+1 = P(Vα);

Vλ =
⋃
α<λ

Vα.

Proposition 118. Each Vα is transitive.

Proof. We prove this by transfinite induction. It is vacuously true for V0. Suppose Vα is transitive
and take x ∈ Vα+1. Then each element of x is in Vα, by definition. Because Vα is transitive we
get that each element of x is a subset of Vα, i.e. each element of x is an element of Vα+1. And so
x ⊆ Vα+1. Finally, take x ∈ Vλ for limit λ, where we suppose Vα is transitive for α < λ. Then there
is α < λ so that x ∈ Vα. But then x ⊆ Vα ⊆ Vλ, and we are done. �

Corollary 119. If α < β then Vα ⊆ Vβ.

Proof. It’s enough to see that Vα ⊆ Vα+1, since the general result follows from an easy induction.
But this is an immediate consequence of Vα being transitive: every element of Vα is also an element
of the powerset of Vα. �

In general, if t is transitive then P(t) is also transitive.

Theorem 120. V =
⋃
α∈Ord Vα. That is, every set appears as an element of some member of the

von Neumann hierarchy.

Proof. We prove this by induction on ∈. Since ∈ is well-founded, by Foundation, and set-like, this
is valid. Consider a set x and suppose that for every y ∈ x we have that y ∈ Vαy . By Replacement,
we can consider the set {αy : y ∈ x}. Set α = supy∈x αy. Then y ∈ Vα for each y ∈ x. But then
x ⊆ Vα, so x ∈ Vα+1. �

Definition 121. The rank of a set x, denoted rankx, is defined recursively as:

rankx = sup{rank y + 1 : y ∈ x}.

Here, we make the convention that sup ∅ = 0 and so rank ∅ = 0.

Exercise 122. Show that rankα = α.

Exercise 123. Show that rankx = α iff Vα+1 is the least place in the von Neumann hierarchy which
has x as an element.

Combined with the previous exercise, this shows that α first appears in Vα+1. In other words,
α ⊆ Vα but α+ 1 6⊆ Vα. So α = Ord ∩ Vα.

We can also use the von Neumann hierarchy to show that adding Foundation to the axioms of
ZFC doesn’t raise the consistency strength of the axioms.

Theorem 124. Inside any model of ZFC − Foundation the von Neumann hierarchy
⋃
α∈Ord Vα is

a model of ZFC.

Corollary 125. ZFC and ZFC − Foundation are equiconsistent.
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Proof. Clearly if ZFC is consistent then so is ZFC − Foundation. For the other direction, suppose
ZFC − Foundation is consistent. Then, by Gödel’s completeness theorem, there is a model M of
ZFC − Foundation. By the theorem, we can define inside M a model of ZFC. So ZFC has a model,
and is thus consistent. �

Proof of theorem. Work in ZFC − Foundation. We want to see that
⋃
α∈Ord Vα satisfies all the

axioms of ZFC. Extensionality is free, since it’s true in the ambient universe. Pairing and Union
are exercises.

Exercise: Show that if x, y ∈ Vα then {x, y} ∈ Vα+1. Show that if x ∈ Vα then
⋃
x ∈ Vα.

(Indeed, if x ∈ Vα+1 then
⋃
x ∈ Vα.)

Infinity holds because ω ∈ Vω+1. Choice holds because Choice holds in the ambient universe
and any binary relation, including a well-order, on a set x ∈ Vα is in Vα+2. (Exercise: check
this!) Separation holds because the von Neumann hierarchy is closed under subset. Powerset holds
because if x ∈ Vα then P(x) ∈ Vα+1. Foundation holds by essentially our argument in ZFC that
V =

⋃
α∈Ord Vα. Finally, Replacement holds because if F is a class function taking sets from⋃

α∈Ord Vα to sets in
⋃
α∈Ord Vα, then the image of any set under F is also in

⋃
α∈Ord Vα. �

A few remarks on this proof. First, it was kinda exhausting to check all those axioms. But it
could be much worse. This is where a spartan axiomatization is nice; the more axioms we use, the
more work it is to check these sorts of things. And if we had more primitative notions then just
‘set’ and ‘membership’, we’d have to check even more. Note, however, that we can lessen the work
by checking some basic cases in a general fashion; see the exercise below.

Second, this is the first of a so-called inner model construction. Namely, we start from the whole
universe of sets, assumed to satisfy such and such axioms. Then we consider a restriction of the
universe to only certain sets, and show that this inner model satisfies more than what we started
out assuming. This gives us a way to prove relative consistency results, similar to our proof that
ZFC is consistent iff ZFC − Foundation is. For example, Gödel constructed the inner model L, the
smallest inner model containing all the ordinals, to show that ZFC + GCH is equiconsistent with
ZF. (But we won’t have time in this course to delve into inner model theory.)

Exercise 126. In this exercise you will show that levels of the von Neumann hierarchy satisfy lots of
the axioms of ZFC. For all of the below, you want to consider Vα as a structure with the restriction
of the membership relation. This structure has appropriate signature to ask whether it satisfies the
axioms of set theory. (Hint: most of these are one line arguments!)

• Show that each Vα satisfies Extensionality.
• Show that each Vα satisfies Union.
• Show that if α is a limit ordinal then Vα satisfies Pairing.
• Show that each Vα satisfies Separation.
• Show that Vα satisfies Infinity if α ≥ ω + 1.
• Show that each Vα satisfies Foundation.
• Show that if α is a limit ordinal then Vα satisfies Choice.
• Show that if α is a limit ordinal then Vα satisfies Powerset.

In short, if α is a limit ordinal > ω then Vα satisfies all the axioms of ZFC except possibly Replace-
ment.

Note that as a corollary of this exercise we can deduce that ZFC proves the consistency of ZFC
− Replacement. This is because ZFC proves that Vω+ω exists and that it satisfies each axiom of
ZFC − Replacement. So unlike with Foundation, adding Replacement ups the consistency strength
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of our theory. We can also conclude from this that we need Replacement to prove the existence of
cardinals ≥ ℵω.

Let’s take this moment to see natural models of a different weakening of ZFC, where we exclude
Powerset instead of Foundation.

Definition 127. Let κ be an infinite cardinal. Then Hκ is the collection of all sets hereditarily
of cardinality < κ, where x is hereditarily of cardinality < κ if the transitive closure of x has
cardinality < κ.
Hω is also referred to as the collection of hereditarily finite sets and Hω1 is also referred to as

the collection of hereditarily countable sets.

Exercise 128. Let κ be an infinite cardinal. Show that x is hereditarily of cardinality < κ iff |x| < κ
and each element of x is hereditarily of cardinality < κ. In other words, we could equivalently
define this notion by induction on ∈.

Exercise 129.

• Show that Hω1 satisfies all axioms of ZFC except for Powerset.
• Let κ be an uncountable cardinal. Show that Hκ satisfies all axioms of ZFC except Powerset

and possibly Replacement.

We will see soon that if κ is regular then Hκ also satisfies Replacement.

Definition 130. If t is a transitive set, ϕ is a formula in the language of set theory, and ā are
elements of t, we write t |= ϕ(ā) if ϕ(ā) is true in t, with the symbol for the membership relation
being interpreted as ∈ restricted to t.4

More formally, this satisfaction relation is defined according to the following Tarskian recursion:

(1) t |= a = b iff a = b;
(2) t |= a ∈ b iff a ∈ b;
(3) t |= ϕ ∧ ψ iff t |= ϕ and t |= ψ;
(4) t |= ϕ ∨ ψ iff t |= ϕ or t |= ψ;
(5) t |= ¬ϕ iff it’s not the case that t |= ϕ;
(6) t |= ∀xϕ(x) iff for all a ∈ t we have t |= ϕ(a);
(7) t |= ∃xϕ(x) iff there is a ∈ t so that t |= ϕ(a);

It follows from transfinite recursion that this relation is well and uniquely defined for any transitive
set t, and so this really defines a relation between finite sequences of elements from t and formulae
in the language of set theory.

Exercise 131. Prove Tarski’s theorem on the undefinability of truth: the class relation V |= ϕ(ā) is
not definable. Why can we not use the principle of transfinite recursion to prove that such a class
is definable? After all, each step in the recursion is itself definable.

An important consequence of the existence of the von Neumann hierarchy is the principle of
Reflection.

Theorem Schema 132 (Lévy–Montague Reflection Principle). Let ϕ(x̄, ȳ) be a formula in the
language of set theory, and let ā be sets. Then, there is an ordinal α with ā ∈ Vα so that for all
ȳ ∈ Vα we have Vα |= ϕ(ā, ȳ) iff ϕ(ā, ȳ) is true in the whole universe of sets.

4For those with a background in logic, this is the usual model theoretic satisfaction relation for the structure
(t,∈).
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Proof. Without loss we may assume that ∀ does not appear in ϕ, by replacing any ∀ with ¬∃¬.
For a formula ϕ and a transitive set t, say that a transitive set u is closed under existential

subformulae of ϕ with parameters from t if for any subformula of ϕ of the form ∃x̄ψ(x̄, b̄), with
b̄ ∈ t, if there are any x̄ so that ψ(x̄, b̄) hold, then there are such x̄ in u. In brief, u is large enough
to see witnesses for all true existential subformulae of ϕ.

We now recursively define a sequence 〈αi : i ∈ ω〉 of ordinals as follows. Start off with α0 least so
that ā ∈ Vα0 . Now given αi, let αi+1 be least so that Vαi+1 is closed under existential subformulae
of ϕ with parameters from Vαi . Finally, set α = supi αi.

Let’s see that Vα |= ϕ(ā, ȳ) iff ϕ(ā, ȳ). We prove this by induction on formulae, working on
subformulae of ϕ. I will do the argument in full since this is the first time in this class we see an
induction on formulae.

Start with atomic formulae. By the definition of the satisfaction relation, Vα |= a = b iff a = b,
and similarly for a ∈ b. Now assume Vα |= ψ and Vα |= θ iff they hold, respectively, in V . Then
Vα |= ψ ∧ θ iff Vα |= ψ and Vα |= θ iff ψ and θ (by inductive hypothesis) iff ψ ∧ θ. A similar
argument works for negation and disjunction.

By our assumption on ϕ, we only have to consider existential quantifiers. So assume Vα |= ψ(ā, ȳ)
iff ψ(ā, ȳ) for all ȳ ∈ Vα. If Vα |= ∃x ψ(ā, x, ȳ) then there is such a witness b ∈ Vα, but then ψ(ā, b, ȳ)
holds by inductive hypothesis. So ∃x ψ(ā, x, ȳ) holds. For the other direction, suppose ∃x ψ(ā, x, ȳ)
holds. Then there is i so that ā, ȳ ∈ Vαi . By construction there is therefore b ∈ Vαi+1 ⊆ Vα so that
ψ(ā, b, ȳ). But by inductive hypothesis, we then get that Vα |= ψ(ā, b, ȳ), and so Vα |= ∃x ψ(ā, x, ȳ).
This is the last step in the induction, and we are done. �

I want to remark that formally, this induction took place in the metatheory. ϕ has only finitely
many subformulae, so really what I gave was a recipe for producing a formula proof of this for each
ϕ, based upon expanding it out into its subformulae and proving them first.

Here is a hella important corollary to reflection.

Corollary 133 (Corollary Schema). If T is a finite collection of axioms of ZFC, then ZFC proves
the consistency of T . In particular, ZFC (if consistent) cannot be axiomatized by finitely many
axioms.

Proof. Let ϕ be the conjunction of the axioms in T . By reflection, there is α so that Vα |= ϕ iff
ϕ. But ϕ holds, because they are axioms. So Vα |= ϕ. Since T has a model—Vα—it must be
consistent, by the Soundness Theorem. �

Exercise 134. Convincingly explain to yourself why this does not contradict Gödel’s second incom-
pleteness, which implies that ZFC does not prove the consistency of ZFC.

I want to end this section by discussing a certain view as to what sets are, the so-called cumulative
hierarchy view. I will give a sketch of the view, handwaving over some philosophical disagreements.

Under this view, sets are built up in transfinite stages. You start with the empty set, whose
existence is uncontroversial, and you go up from there. As you go up a set, the new sets are all
collections of old sets. In other words, to go from stage α to stage α + 1 you take the powerset of
the previous stage. This process is iterated along the ordinals, with the sets being the objects that
appear at some stage in the process. It’s clear that the stages in this construction are just the Vαs,
since we start with V0 = ∅ and take powersets at each successor. The statement that this process
exhausts the sets is just the theorem V =

⋃
α Vα.

Missing so far is the important question: how high? This view seems to preassume the totality
of ordinals, which is quite a tall order. So we must say something about how many ordinals
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there are. One popular answer, with antecedents back to Cantor, is that the totality of ordinals
should be ineffable—there should be no distinguishing property of Ord that separates it from an
initial segment. So, for example, the universe cannot be Vω+ω because then the class of ordinals is
describable—it is just ω + ω.

This ineffability is formalized through reflection principles, which assert that there are lots of αs
so that Vα resembles V . We have already seen the most basic of these, Lévy–Montague Reflection
which is reflection for properties expressible by a first-order property. Stronger reflection principles
motivate strong axioms of infinity, which go beyond ZFC in strength. For example, this is one way
to motivate inaccessible cardinals, which we will see soonish.

ZFC can be seen as an attempt to axiomatize this view of sets, similar to how Peano arithmetic is
an attempt to axiomatize a view of what natural numbers are. Note that we can be confidant that
this view avoids the paradoxes of size—Russell’s paradox, Burali–Forti’s paradox, and so forth—
without needing to write down any axioms. For example, there is no set of all ordinals (and hence
the Burali–Forti paradox is avoided) because there is no stage at which we have collected all of the
ordinals.

Exercise 135 (Open-ended, kinda philosophical). Which axioms of ZFC can be argued for from this
view? Are there any which aren’t settled by the cumulative hierarchy view?

Exercise 136. Show that Replacement is equivalent to the Reflection schema, over the other axioms
of ZFC. (Hint: the only remaining step is to show that you can prove instances of Replacement
from corresponding instances of Reflection.)
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7. Small large cardinals

To round out part 0 of this course, I want to discuss the small large cardinals, by which I mean
those which go beyond what you’ve likely seen in other classes, while still having their existence be
provable from ZFC.5 Let’s start by dividing the infinite cardinals into two classes.

Definition 137. If (L,<) is a linear order then the cofinality of L, written cof L, is the least ordinal
α so that there is an order embedding e : α→ L which is cofinal in L: for any ` ∈ L there is β < α
so that e(β) >L `.

For example, the cofinality of (R, <) is ω. There is a countable cofinal sequence of reals, but no
finite sequence can be cofinal. Also note that cof L is finite iff L has a maximum iff cof L = 1. So
this is really only interesting in case L lacks a maximum iff cof L is infinite.

We are mostly interested in the case where L is an ordinal.

Exercise 138. For any linear order (L,<), we have that cof L is a cardinal.

In particular, this exercise shows that if cof α = α then α is a cardinal. (Here, we think of α as
having its canonical order ∈ attached.) So the following distinction wouldn’t be meaningful applied
to the non-cardinals.

Definition 139. An infinite cardinal κ is regular if cof κ = κ. Otherwise, κ is called singular.

Observe that ℵ0, ℵ1, and in general ℵn for n ∈ ω are all regular. The smallest singular cardinal is
ℵω. It has cofinality ω, as witnessed by the sequence 〈ℵi : i ∈ ω〉.

Proposition 140. Let κ be an infinite cardinal. Then cof(cof κ) = cof κ. In particular, cof κ is
regular.

Proof. Suppose 〈αi : i ∈ cof(cof κ)〉 is cofinal in cof κ. Let the sequence 〈βi : i ∈ cof κ〉 witness that
κ has cofinality at most cof κ. Now consider the sequence 〈βαi : i ∈ cof(cof κ)〉. This sequence is
cofinal in κ. So cof κ ≤ cof(cof κ). But since cof λ ≤ λ, we get cof κ = cof(cof κ). �

Definition 141. An infinite cardinal κ is a successor cardinal if κ = λ+ for some cardinal λ.
Equivalently, κ is a successor iff κ = ℵα+1 for some α. Otherwise, κ is a limit cardinal, which
happens iff κ = ℵγ for a limit ordinal γ.

Proposition 142. Every successor cardinal is regular.

Proof. Suppose towards a contradiction that κ = λ+ were singular. Then there would be a cofinal
sequence 〈αi : i ∈ µ〉 of ordinals in κ where µ < κ. So κ =

⋃
i∈µ αi. Since |αi| ≤ λ, we would thus

get that

κ ≤
∑
i∈µ
|αi| =

∑
i∈µ

λ = λ · µ = λ,

a contradiction. �

It follows that any singular cardinal must be a limit cardinal.

Question 143. Is there a regular limit cardinal?

5Strictly speaking, this is not quite correct. Except for the cardinals below defined in terms of the cardinal
exponentiation map κ 7→ 2κ, for each of them it is consistent with ZFC that they be smaller than 2ℵ0 . For example,

it’s consistent with ZFC that 2ℵ0 is larger than the least aleph fixed point, defined below. We will prove these
consistency assertions in part 2 of this course.
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We will come back to this question in part 1.

Definition 144. A cardinal κ is an aleph fixed point if κ = ℵκ.

Proposition 145. For any cardinal κ there is an aleph fixed point > κ.

Proof. Recursively define an increasing sequence 〈λi : i ∈ ω〉 of cardinals ≥ κ. Start with λ0 = κ.
Given λi set λi+1 = ℵλi . Set λ =

⋃
i λi. Let us see that λ is an aleph fixed point. Suppose towards

a contradiction that λ = ℵα for α < λ. Then α < λi for some i. But then

λ = ℵα < ℵλi = λi+1 < λ,

which is a contradiction. �

The aleph fixed point we constructed is clearly singular, having cofinality ω. Are there regular
aleph fixed points? Since aleph fixed points are limit cardinals (check it!) answering this question
would answer the previous question. So we will come back to it in part 1.

Exercise 146. Fix your favorite regular cardinal ρ. Modify the construction of the above proof to
show that above any cardinal κ there is an aleph fixed point of cofinality ρ. (Hint: it should be
clear from your construction that the cofinality of your aleph fixed point is at most ρ. You must
also show that the cofinality cannot be < ρ.)

We should also consider how cardinal exponention plays with the cardinals.

Definition 147. The beth numbers are defined as follows.

• i0 = ℵ0 = ω;
• iα+1 = 2iα ; and
• iγ = supα<γ iα for γ limit.

We can also relativize this, starting at a cardinal κ.

• i0(κ) = κ;
• iα+1(κ) = 2iα(κ); and
• iγ(κ) = supα<γ iα(κ) for γ limit.

Using this terminology, we can state Cantor’s continuum hypothesis as the equality

ℵ1 = i1.

We can also state the Generalized Continuum Hypothesis in the form:

∀α ∈ Ord ℵα = iα.

Exercise 148. Prove that for all α that ℵα ≤ iα.

Exercise 149. Define what it means for a cardinal to be a beth fixed point. Show that for every
cardinal κ there is a beth fixed point > κ.

Definition 150. An infinite cardinal κ is a strong limit cardinal if 2λ < κ for all λ < κ.

Exercise 151. Show that iγ is strong limit for all limit ordinals γ.

Question 152. Is there a regular strong limit ordinal?

We will return to this question in the next part.
To finish off this section, let us prove an important theorem about cardinal arithmetic.
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Theorem 153 (Gyula Kőnig). Let I be a set and suppose 〈κi : i ∈ I〉 and 〈λi : i ∈ I〉 are sequences
of cardinals so that κi < λi for each i ∈ I. Then,∑

i∈I
κi <

∏
i∈I

λi.

Proof. Let Ai, for i ∈ I, be pairwise disjoint sets of cardinality, respectively, κi. We want to show
that there is no surjective function f :

⋃
i∈I Ai →

∏
i∈I λi. To see this, take a function f with

appropriate domain and range. For each i ∈ I let fi be the composition of f with the projection
map

∏
j∈I λj → λi. Because |Ai| < λi we can pick, for each i ∈ I, bi ∈ λi \ ran fi. But then

(bi : i ∈ I) is not in ran f , so f is not surjective onto the product. �

Note that we used Choice to prove this theorem. In fact, it is equivalent to Choice over ZF.

Corollary 154. Let κ be an infinite cardinal. Then κ < κcof κ.

Proof. By applying Kőnig’s theorem with I = cof κ, 〈κi : i ∈ cof κ〉 cofinal in κ, and λi = κ. Then

κ =
∑
i∈cof κ

κi <
∏

i∈cof κ

κ = κcof κ. �

Corollary 155. Let κ be an infinite cardinal and λ ≥ 2. Then κ < cof λκ.

Proof. Otherwise if κ = cof λκ then

λκ < (λκ)κ = λκ·κ = λκ,

a contradiction �

In particular, we know that 2ℵ0 6= ℵω.

Exercise 156. Show that if κ is regular then Hκ satisfies Replacement.
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