MATH454 HOMEWORK 4 DUE THURSDAY, SEPTEMBER 26

Exercise 1. Do Exercise 3.17 from the textbook.

Define a new operation on ordinals, *tetration* $\alpha \uparrow \beta$, by recursion:

• $\alpha \uparrow 0 = 1;$

- $\alpha \uparrow (\beta + 1) = \alpha^{\alpha \uparrow \beta};$
- If γ is limit, then $\alpha \uparrow \gamma = \sup_{\beta < \gamma} \alpha \uparrow \beta$.

Exercise 2. Calculate $2 \uparrow 4$ and $\omega \uparrow \omega$.

Exercise 3. Show by example that $(\alpha \uparrow \beta) \uparrow \gamma = \alpha \uparrow (\beta \cdot \gamma)$ and $(\alpha \cdot \beta) \uparrow \gamma = (\alpha \uparrow \gamma) \cdot (\beta \uparrow \gamma)$ do not hold for all ordinals. [Hint: You can find finite counterexamples.]

Exercise 4. Prove the following facts about tetration:

- $1 \uparrow \alpha = 1$ for all α ;
- If $\beta < \gamma$ then $\alpha \uparrow \beta \le \alpha \uparrow \gamma$. [Hint: Fix α and β and do induction on $\gamma \ge \beta$. What is the base case?]

The remaining exercise about induction and recursion in a more general setting than linear orders.

You can do induction and recursion on more than linear orders. For linear orders, it was precisely the well-orders on which induction is valid. For relations in general, it is precisely the well-founded relations on which induction is valid. Recall that a binary relation $R \subseteq A \times A$ is well-founded if any nonempty $X \subseteq \text{dom } R$ has an *R*-minimal element. That is, if $X \subseteq \text{dom } R$ is nonempty then there is $m \in X$ so that there is no $x \in X$ with x R m.

Exercise 5. Prove that induction is valid on well-founded relations. That is, let R be a well-founded relation with domain A. Suppose that $X \subseteq A$ has the property that for all $x \in A$ if all y R x are in X, then $x \in X$. Show that X = A. [Hint: Suppose toward a contradiction that $X \neq A$. Then $A \setminus X$ has a minimal element.]

Similar to how you can do induction on Ord, even though Ord is not a set, you can do induction on some well-founded relations too big to be sets. The most important example of this is induction on the membership relation \in .

Exercise 6. Prove that induction on \in is valid. That is, let P(x) be a property. Suppose that for all sets x that if all $y \in x$ have P(y) then P(x). Show that P(x) holds for all x. [Hint: Suppose there is some x so that P(x) fails. Then, since the membership relation is well-founded, there is a minimal counterexample: an x so that P(x) fails but P(y) holds for all $y \in x$.]

Exercise 7. Prove that $V = \bigcup_{\alpha \in \text{Ord}} V_{\alpha}$. That is, prove that for all x there is an ordinal α so that $x \in V_{\alpha}$. [Hint: let P(x) be the property "there is an ordinal α so that $x \in V_{\alpha}$ ".]

The following theorem schema expresses that it is valid to define something by recursion on a well-founded relation. **Theorem Schema.** Let R be a well-founded relation with domain A. And suppose P(x, y, z) is a function-like property. (That is, for each x, y there is a unique z so that P(x, y, z).) Then there is a function f with domain A so that for each $a \in A$ we have $P(a, f \upharpoonright \{b \in A : b R a\}, f(a))$.

Exercise 8 (Reach). Prove this theorem schema, following this outline of steps, which is a generalization of the argument from class that transfinite recursion can be done on well-orders.

- (1) Make the following definition of a property Q(x, y):
 - If $x \notin A$, then Q(x, y) if and only if y = 0;
 - If $x \in A$, then Q(x, y) if and only if there is a function s with domain $\{b \in A : b \ R \ x\}$ so that (i) for all $b \ R \ x$ we have $P(b, s \upharpoonright \{c \in A : c \ R \ b\}, s(b))$ and (ii) y = s(x).
- (2) Show that Q(x, y) is function-like.
- (3) Use the Replacement axiom schema on Q(x, y) and A to get a set Y so that for each $a \in A$ there is $y \in Y$ so that Q(a, y).
- (4) Define $f \subseteq A \times Y$ as $(a, y) \in f$ if and only if Q(a, y). Conclude that f is the desired function.

One of the most important applications of transfinite recursion on general well-founded relations is the full version of the Mostowski collapse lemma. Say that a binary relation E with domain A is *extensional* if given any $x, y \in A$ we have that x = y if and only if $\{z \in A : z E x\} = \{z \in A : z E y\}$. That is, extensional relations are those which satisfy the axiom of extensionality (except formulated with E instead of \in).

Theorem (Mostowski). Let E be a well-founded and extensional binary relation with domain A. Then there is a unique transitive set t and a unique isomorphism $\pi : (A, E) \to (t, \in)$.

(This is not actually the fullest version of Mostowski's result. There is also a version for properties.)

Exercise 9 (Reach). Prove the Mostowski collapse lemma. [Hint: define, by recursion on E, the function $\pi(x) = \{\pi(y) : y \in x\}$. Show that this π is an isomorphism.]

Exercise 10 (Reach even further). Formulate a theorem schema expressing that transfinite recursion is valid on \in . Prove this theorem schema.

It turns out that while transfinite recursion is valid on \in , it is not in general valid for all wellfounded properties. (Where a property P(x, y) is well-founded if given any nonempty set X there is $m \in X$ so that there is no $x \in X$ with P(x, m).) Proving this, however, requires ideas that go beyond the scope of this class. If you are interested in knowing more, talk to me and I can point you to some references.