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To begin this course, I thought I’d do something a little different and go historical. Most, if
not all of you, have already seen an a proof of Cantor’s theorem that the set of real numbers is
uncountable. But the argument you’ve (probably) seen, the diagonalization argument, is from 1891,
seventeen years after Cantor first proved his theorem, in what is the first set theory paper. I want
to give you Cantor’s original argument, in the context of giving a new proof of Liouville’s theorem
on the existence of transcendental numbers. I will follow Cantor’s 1874 paper “On a property of
the collection of all real algebraic numbers”, though I will use modern notation.

1. On a property of the set of real algebraic numbers

Definition 1. A real number x is said to be algebraic if there is a natural number n and integers
a0, . . . , an so that

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0.

In other words, an algebraic real is one which is a root of a polynomial with integer coefficients.
A real number is transcendental if it is not algebraic.

Observe that if x is rational then x is algebraic: If x = p/q, where p and q are integers, then
qx − p = 0. As a consequence, the algebraic numbers are dense in the reals: if a < b are real
numbers then there is an algebraic number between a and b. (This is simply because the rationals
are dense in the reals.) Indeed, it immediately follows that there are infinitely many algebraic
numbers between a and b, because we can keep splitting the interval into smaller and smaller pieces
and keep finding new algebraic numbers. Also observe that there are irrational algebraic numbers,
such as

√
2.

A natural question to ask is whether every real number is algebraic. The answer turns out to be
no.

Theorem 2 (Liouville 1844). Let a < b be real numbers. Then there are infinitely many transcen-
dental numbers in the interval (a, b).

Liouville’s construction—which we will not see—is ‘artificial’; the transcendental numbers he
constructs hadn’t been considered before his proof. Later, well-known numbers like e and π were
shown to be transcendental. Showing a given number is transcendental is in general really, really,
hard. For example, it is still an open question whether π + e is transcendental.

Let’s now move to seeing Cantor’s proof of Liouville’s theorem. His proof goes through two steps,
which I will label as lemmata.

Lemma 3 (Cantor). There is a sequence x0, x1, . . . , xn, . . ., for n ∈ N, of all algebraic reals.

Lemma 4 (Cantor). Let a < b be real numbers. Then there is no sequence of all real numbers in
the interval (a, b).
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Before we prove these lemmata, let’s see how they imply Liouville’s theorem.

Proof of Liouville’s theorem from the lemmata. Let a < b be real numbers and let x0, x1, . . . , xn, . . .
be the sequence of all algebraic reals. From this sequence we can get a sequence of all algebraic
reals in (a, b): Simply let y0 be the first xn which is in (a, b), then y1 be the next, and so on. This
process never stops because there are infinitely many algebraic reals in the interval. By the second
lemma, this sequence cannot make up the entire interval (a, b). So there must be a real in the
interval not in the sequence; that is, there must be a transcendental real in the interval. �

Now let’s move on to proving the lemmata.

Proof of Lemma 3. Consider a polynomial

anx
n + an−1x

n+1 + · · ·+ a1x+ a0 = 0

with integer coefficients. As an ad hoc definition, say that the height of the polynomial is the sum
of the absolute values of its coefficients plus its degree. That is, the height is

n+ |an|+ |an−1|+ · · ·+ |a1|+ |a0| .
The key claim is that given a height H, there are only finitely many polynomials of height H. This
is because the degree n must be less than H, and given a degree n and height H the absolute values
of the coefficients must add to H −n, of which there are only finitely many ways to do so. Because
a polynomial of degree n has at most n roots, this means that given a height H there are finitely
many reals which are roots of a polynomial of height H.

Given H, let A(H) be the set of all algebraic numbers which are roots of polynomials of height
exactly H. We have just seen that A(H) is always finite. We now define a sequence of all algebraic
numbers as follows: start by listing all elements of A(2), in ascending order. (Observe that A(0)
and A(1) are both empty, so there is nothing from them to list.) This gives the first |A(2)| = 1
members of the sequence. Next list all elements of A(3), again in ascending order. This gives the
next |A(3)| members of the sequence. Continue onward in this fashion. Before stage n, we have
only listed |A(1)| + · · · + |A(n− 1)| many numbers, i.e. finitely many. So what we get really is a
sequence, with each member appearing at some natural number index.

It is clear from the construction that every number in the sequence is algebraic. On the other
hand, the sequence contains all algebraic numbers, since each algebraic number is the root of a
polynomial of some height H. �

The sequence we constructed will have lots of repetitions. Each algebraic number will appear
infinitely often! If this bothers you, then when constructing the sequence you can only add a new
element if it hasn’t yet appeared. This gives a sequence of all algebraic reals, one without any
repetitions.

Proof of Lemma 4. Suppose we have a nondegenerate interval (a, b) and a sequence

x0, . . . , x1, . . . , xn, . . . .

We want to find a number in the interval (a, b) which does not appear in the sequence. To that end,
set a0 = a and b0 = b. Given ai < bi, we want to define ai+1 and bi+1 so that ai < ai+1 < bi+1 + bi.
Namely, we do this by letting ai+1 be the first number on the sequence which is in (ai, bi) and
letting bi+1 be the first number on the sequence which is in (ai+1, bi).

Now, it may be that this process terminates at some finite stage i. (For example, if a = 0, b = 1,
and each xn is greater than 1, then it terminates at stage 0.) But if this happens, then we have
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that at most one element of the sequence is in the interval (ai, bi). At this point, the conclusion of
the lemma is clear.

So suppose we are not in this boring case, and that this process goes on infinitely. That is, we
have constructed a descending sequence (a0, b0), (a1, b1), . . ., (ai, bi), . . ., for n ∈ N, of intervals
which get smaller and smaller in length. Consider the sequences a0 < a1 < · · · ai < · · · and
b0 > b1 > · · · > bi > · · · . Let A be the supremum (= least upper bound) of the set {ai : i ∈ N},
which exists by the completeness property of R. And let B be the infimum (= greatest lower bound)
of the set {bi : i ∈ N}, again existing by the completeness property of R.

I claim that no number in the interval [A,B] appears in the sequence x0, x1, . . . , xn, . . .. To see
why, let’s look a little more closely at our construction of the sequence of intervals (ai, bi). Say that
xn is rejected at stage i if xn is not in the interval (ai, bi). The idea is, not being in the interval
(ai, bi) rules out being in the interval [A,B], since it is a strictly smaller interval. And note that,
for the same reason, if xn is rejected at stage i then xn is rejected at every further stage. So let’s
see that each xn is rejected at some stage. There are two possibilities. The first is that xn is ai or bi
for some i. In this case, xn won’t be in (ai+1, bi+1), so xn is rejected at stage i+1. The second case
is that this doesn’t happen. Note that we must have eventually looked at xn during stage i some
large enough i, since each stage consumes two numbers from the sequence. But by the definition of
the intervals (ai, bi) this means that when we looked at xn during stage i to try to decide whether
it was within (ai, bi), we had that it was out of bounds. So then xn was rejected at stage i.

Since each xn fails to be in (ai, bi) for some large enough i, we get that each xn fails to be in
[A,B], as desired. �
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