Study guide for Math 244 Midterm 1

Monday, September 24

These are the sorts of questions you should know how to solve for the first midterm.

- 1. Let $\vec{F} = xy\vec{\imath} + e^{yz}\vec{\jmath} + (2y+z)\vec{k}$. Calculate curl \vec{F} and div \vec{F} .
- 2. Calculate the volume of solid in the first octant bounded by the coordinate planes and the surface $z = 4 x^2 y$.
- 3. Calculate the volume of the solid bounded by the sphere $\rho = 3$ and the cone $\phi = -\pi/6$.
- 4. Calculate the volume of the surface bounded below by the surface $z = (x^2 + y^2)^2$ and above by the plane z = 1.
- 5. Calculate the surface area of the surface $z = x^2 + y$ with $-1 \le x \le 1$ and $0 \le y \le 2$.
- 6. Use the coordinate transform x = u + 2v, y = 2v to calculate $\iint_R x + y \, dx \, dy$, where R is the parallelogram with vertices (0,0), (1,2), (1,4), and (0,2).
- 7. Calculate $\int_C \vec{F} \, d\vec{r}$ where C is the portion of the unit circle from the point (1,0) to (0,1) and $\vec{F} = (x^2, -y)$.
- 8. Use Green's theorem to calculate the counterclockwise circulation of $\vec{F} = (ye^x, xe^y)$ around the square with corners (0,0), (1,0), (1,1), and (0,1).
- 9. Check that the vector field $\vec{F} = yz \cos(xy)\vec{\imath} + xz \cos(xy)\vec{\jmath} + \sin(xy)\vec{k}$ is conservative.
- 10. Use Stokes' theorem to calculate

$$\iint_{S} \nabla \times (y\vec{\imath}) \cdot \vec{n} \, \mathrm{d}\sigma,$$

where S is the hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$.

You are not expected to memorize Green's theorem and Stokes' theorem. You should also expect that a few problems will ask you to set up integrals but not actually compute them.