1. (5 points) State the version of Fubini’s theorem for integrating a function f(z,y) over a rectangular
region R given by a < z < b and ¢ < y < d. (Hint: remember that you need to make an assumption

about f(z,y).)
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where R is the quarter circle of radius 17 in the first quadrant. One of ghese ‘integrals must be in
rectangular form, the other must be in olal form. (Hint: 172 = 289.)
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3. (20 points) Consider the double integral [f, sin(x — y) dA where R is the triangle bounded by the lines
y==z,x=mn/2, and y = 0. Set up two different iterated integrals to calculate this double integral, one

where you integrate with respect to z and then with respect to y, and the other where you integrate
with respect to y and then with respect to z. Solve one of these two—your choicel—integrals.
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4. (10 points) Calculate the double integral
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over the rectangle R given by =2 <z <2and -2<y <2 Z

5. (10 points) Consider the point P = (0,2,—1) and the line given by £(t) = (57— 7+ 2k)t. Find an
equation for the plane determined by the point P and the line £(2). w S eue | — Vi V\T — 572"’-/‘"/1‘6
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6. (20 points) Let R be the region bounded by the curve 2y = 1 and the lines y = 0, x = e, and = = €°.

Sketch the region R and calculate the double integral

/ /}; sinh(zy) dA.

! k’ X (Hint: sinh(u) = £5£— is the hyperbolic sine.)
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1. (6 points) Consider the hyperbolic paraboloid given by the equation

_ $2 y2
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where a and b are positive real numbers. What is the average height of this hyperbolic paraboloid over
the rectangular region R given by 0 <z <aand 0 <y < b?
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2. (6 points) Let m < M be real numbers. What is the average height of the same hyperbolic paraboloid
from the previous question over the rectangular region R given by ma < z < Ma and mb <y < Mb?
(So the previous question was the special case where m = 0 and M = 1. You can check your work by
checking that the answer you get here matches the previous answer for this special case.)
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3. (8 points) Let 0 < m < M be non-negative real numbers. Consider the hyperbolic paraboloid given by

the equation
=y —2°

What is the average height of this hyperbolic paraboloid on the annulus region R consisting of all points
whose distance to the origin is between m and M? (Hint: recall that cos(28) = cos?(8) — sin®(6).)
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