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Hey, you got set theory in my computable structure theory!
Hey, you got computable structure theory in my set theory!
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An introduction to forcing: forcing the continuum hypothesis

We will force CH by adding an wi-sequence G of all reals.

@ The poset consists of
p which are possible
approximations to G: functions o — 2 for
countable a. Stronger conditions are
longer binary sequences, which give more
information about G.

@ G will be an ;
with every real coded at some point.
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e The poset consists of @ Not just any branch through the tree
p which are possible Add(ws, 1) will code every real.
approximations to G: functions o — 2 for @ To ensure this, we insist G be —it
countable a.. Stronger conditions are must meet every set of conditions.
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e The poset consists of @ Not just any branch through the tree
p which are possible Add(ws, 1) will code every real.
approximations to G: functions o — 2 for @ To ensure this, we insist G be —it
countable a.. Stronger conditions are must meet every set of conditions.
longer binary sequences, which give more e For any x : w — 2 and any condition p
information about G. you can extend p to code x.
@ G will be an ' e A property ensures no new reals

with every real coded at some point. e sy,

Genericity is important for more than just coding every real.
@ Genericity forces G ¢ V.
@ Genericity will ensure that the forcing extension satisfies the axioms of ZFC.
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Building the forcing extension

Our wi-sequence G doesn't just code all reals, it also tells us how to build the
entire forcing extension V[G].

@ Recursively define names, which describe objects in the larger universe.
e G says how to interpret names: x@ is the interpretation of x.

@ There are definable forcing relations p IF ¢(x,...) which control the
behavior of V[G]:

V[G] E ¢(x°,...) & 3Ipe G plF ¢(x,...)

@ Can use the genericity of G to check that the axioms of ZFC are preserved
in V[G].
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An intuitive sketch of forcing, in general

o A P consists of possible
approximations to a new object G.

@ This G will be a CP.

@ Recursively defined describe
objects in the extension.

° plF o(x,...) control the
behavior of V[G].

Three main parts of forcing:
o Getting a generic G;
@ Interpreting the names to build the forcing
extension;
@ Using the forcing relations to determine
satisfaction in the forcing extension.
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An intuitive sketch of forcing, in general

° A [P consists of possible The art is choosing [P to force what you want.
approximations to a new object G.
e This G will be a CP. CH Add(wi,1)

-CH Add(w,w>)
Whitehead conj.  Add(wi, 1)
—Whitehead conj. an w»p-iteration of ccc

Recursively defined describe
objects in the extension.

° p Ik ¢(x,...) control the forcings
behavior of V[G]. Borel conj. an wy-iteration of posets
Three main parts of forcing: of Laver trees
e Getting a generic G; —=SCH Prikry forcing at a large
cardinal

@ Interpreting the names to build the forcing
extension;

@ Using the forcing relations to determine
satisfaction in the forcing extension.
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The answer to the titular question: obviously not computable

@ Any computable process takes place entirely in V, so it's not
possible to produce G.

@ Indeed, computation is absolute, so anything we could do in V[G]
must already be in the ground model.

@ We're dealing with uncountable objects and transfinite recursion.
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The answer to the titular question: obviously not computable

@ Any computable process takes place entirely in V, so it's not
possible to produce G.

@ Indeed, computation is absolute, so anything we could do in V[G]
must already be in the ground model.

@ We're dealing with uncountable objects and transfinite recursion.

If you know about the boolean algebra approach to forcing, the same
problems recur.

@ Building a complete boolean algebra B from a poset P and
building a boolean topos V2 from B are both infinitary processes.
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For the titular question to be nontrivial we must
mean something else.
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The multiverse of set theory

A standard approach in the model theory of set
theory is to look at

@ Rich tools are available and there is a
robust multiverse to study.

@ The implies
generics and thus forcing extensions over
countable models always exist.

@ Can think of a countable model of set
theory as w equipped with a binary
relation €M.

@ This is also an appropriate setting for
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The multiverse of set theory

A standard approach in the model theory of set

theory is to look at .
Can formulate questions.

Given M = (w, €M) and a poset P € M:

@ Rich tools are available and there is a .
e Can we compute a generic G?

robust multiverse to study. _
@ Can we compute a representation of the

@ The implies forcing extension M[G]?

generics and thus forcing extensions over

countable models always exist. @ Can we compute the elementary diagram

-
@ Can think of a countable model of set of M[G]?

theory as w equipped with a binary
relation V.
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The multiverse of set theory

A standard approach in the model theory of set

theory is to look at .
Can formulate questions.

Given M = (w, €M) and a poset P € M:

@ Rich tools are available and there is a .
e Can we compute a generic G?

robust multiverse to study. _
@ Can we compute a representation of the

@ The implies forcing extension M[G]?

generics and thus forcing extensions over

countable models always exist. @ Can we compute the elementary diagram

of M[G]?
Warning! No model of set theory can be
computable simpliciter; we can only ask about
computability relative to an oracle.

@ Can think of a countable model of set
theory as w equipped with a binary
relation M.

@ This is also an appropriate setting for
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Given the atomic diagram of M = (w, €M)

and a poset P € M you can compute a

generic G for P, given parameters.

«O» «<Fr» «E>» «E» = o>




Computing a generic G

Theorem (Hamkins—Miller-W.)

Given the atomic diagram of M = (w, €M)
and a poset P € M you can compute a
generic G for P, given parameters.

@ The atomic diagram is simply the
relation €.

o Literally, P is an integer, not a set of
conditions. Its extension is
P€ = {n€w:neMP}, and by
computing G | mean as a subset of
P€.
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Computing a generic G

Theorem (Hamkins—Miller-W.) Proof: The usual proof of the Rasiowa-Sikorski

Given the atomic diagram of M = (w, GM) is effective. 0

and a poset P € M you can compute a

i . A little more detail: Fix the integers which are
generic G for P, given parameters.

P, <p, £p, Lp, D the collection of dense
subsets of IP and this gives you the data needed
to carry out the construction.

@ The atomic diagram is simply the

relation €M.

o Literally, P is an integer, not a set of  Caution! Because we need to fix these integers
conditions. Its extension is non-uniformity is introduced; an isomorphic
P€ = {n€w:neMP}, and by copy of the model will need to use a Turing
computing G | mean as a subset of machine which looks at different integers.
PE.
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What can we compute from the atomic diagram?

Theorem (Hamkins—Miller-W.)

Let X be a subset of a model M of set theory.
TFAE:

@ There is a single c.e. operator which takes
the atomic diagram of a presentation of
M and outputs the copy of X for that
presentation. (X is in
the atomic diagram.)

@ Membership a € X is witnessed by a finite
pattern of € in the transitive closure of a,
with the list of patterns c.e. in the atomic
diagram.
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What can we compute from the atomic diagram?

All of the following predicates are not

uniformly r.i.c.e. in the atomic diagram. Theorem (Hamkins—Miller-W.)
o x=10 Let X be a subset of a model M of set theory.
e xCy TFAE:
@ x is an ordered pair @ There is a single c.e. operator which takes

the atomic diagram of a presentation of
M and outputs the copy of X for that
presentation. (X is in
the atomic diagram.)

@ x is a function

@ x is an ordinal
e X=w

@ Membership a € X is witnessed by a finite

pattern of € in the transitive closure of a,

with the list of patterns c.e. in the atomic
diagram.
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All of the following predicates are not

uniformly r.i.c.e. in the atomic diagram. Theorem (Hamkins—Miller-W.)
o x=10 Let X be a subset of a model M of set theory.
e xCy TFAE:
@ x is an ordered pair @ There is a single c.e. operator which takes

the atomic diagram of a presentation of
M and outputs the copy of X for that
presentation. (X is in

@ x is a function

@ x is an ordinal

ex=w the atomic diagram.)
'I;]hey are ;” I thde o bonled @ Membership a € X is witnessed by a finite
they c?n glexpressediusing on thoun eh pattern of € in the transitive closure of a,
quantitiers e ' 5 15 dnie with the list of patterns c.e. in the atomic

correct notion of the basic data of a

diagram.
model of set theory.
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Computing the forcing extension M[G]

Theorem (Hamkins—Miller-W.)

Take the Ag-diagram for M = (w, €M) as
an oracle fix a poset P € M. Then we can

computably produce G an M-generic for P
and a copy of M[G].

More precisely, we can compute a relation
€¢ C w? so that M[G] = (w, € M[®]) and
we can compute the canonical embedding
M — MI[G].
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Computing the forcing extension M[G]

Theorem (Hamkins—Miller-W.)

Take the Ag-diagram for M = (w, €M) as
an oracle fix a poset P € M. Then we can

computably produce G an M-generic for P

Proof sketch: Everything we need is A; and
and a copy of M[G].

hence computable in the Ay diagram. O

More precisely, we can compute a relation
€¢ C w? so that M[G] = (w, € M[®]) and
we can compute the canonical embedding
M — MI[G].
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Computing the elementary diagram

Theorem (Hamkins—Miller-W.)

Suppose we have the elementary diagram
of M = (w, €M) as an oracle and P € M
is a poset. Then we can computably
produce G an M-generic for P and the
elementary diagram of a copy of M[G].

This also goes level by level. From the
> ,-diagram we can compute the
> ,-diagram for a copy of the extension.
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Computing the elementary diagram

Theorem (Hamkins—Miller-W.)

Suppose we have the elementary diagram
of M = (w, €M) as an oracle and P € M
is a poset. Then we can computably
produce G an M-generic for P and the
elementary diagram of a copy of M[G].

Proof sketch: The map ¢ — “pIF ¢" sending

a formula to the corresponding forcing relation
is computable, and we use the forcing relations
to compute the elementary diagram. O

This also goes level by level. From the
> ,-diagram we can compute the
> ,-diagram for a copy of the extension.
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Forcing is a computable procedure

Forcing is a computable procedure, with the level of information given as an
oracle determining

e Given the atomic diagram for M = (w, €M) and a poset P € M we can

compute a for P (using parameters).
@ Given the Ag-diagram we can moreover compute a copy of the
and its
o Given the 2 ,-diagram we can compute the of the extension.
@ Given the elementary diagram we can compute the of

the extension.
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So about that non-uniformity

@ The construction of G proceeded by searching through the
conditions in P and the dense subsets of P.

o A different presentation of M will give a different order for the
search, and produce a different G.

o In general, there will be 2% many possible G's, so the M[G] can't
all be the same.
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So about that non-uniformity

@ The construction of G proceeded by searching through the
conditions in P and the dense subsets of P.

o A different presentation of M will give a different order for the
search, and produce a different G.

o In general, there will be 2% many possible G's, so the M[G] can't
all be the same.

Altogether this tells us there is a non-uniformity to the process.

Can we get uniformity by a different process?
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Making the notion of uniformity precise: functoriality

For a structure M let Iso(/M) denote the
category of isomorphic copies of M, with
isomorphisms as its morphisms.

@ A process to interpret N in M gives a map
F :1so(M) — Iso(N).
@ If F preserves isomorphisms then it is a

functor.

@ So asking for a uniform procedure to
construct M[G] from M amounts to
asking for a functor

F : Iso(M) — Iso(M[G]).
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Turing functional ® which given info
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Making the notion of uniformity precise: functoriality

As computable structure theorists we don't

want just any functor.
For a structure M let Iso(/M) denote the J J

category of isomorphic copies of M, with @ A functor F is computable if there is a
isomorphisms as its morphisms. Turing functional ® which given info
about an isomorphism M — M* as an

oracle will compute an isomorphism
F(M) — F(M*).

e (HTMMM 2017) There is a computable
functor F : Iso(M) — Iso(N) iff N is
effectively interpretable in M.

e (HTMM 2018) If F : Iso(M) — Iso(N) is
Baire-measurable then there is an
infinitary interpretation Z of N in M so
that F is naturally isomorphic to Fz.

@ A process to interpret N in M gives a map
F :1so(M) — Iso(N).

@ If F preserves isomorphisms then it is a
functor.

@ So asking for a uniform procedure to
construct M[G] from M amounts to
asking for a functor
F :1so(M) — Iso(M[G]).
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functor Iso(M) — Iso(M[G]).

If ZFC is consistent there is M = ZFC so that there is no computable

«40>» «F>» «E» « E>» = o>



If ZFC is consistent there is M = ZFC so that there is no computable
functor Iso(M) — Iso(M[G]).

Indeed (Schlicht + HMW), can rule out a Borel functor mapping

models to forcing extensions, even if we weaken “isomorphic” to
“elementarily equivalent”.




If M is a pointwise-definable model of set theory there is a computable functor
Iso(M) — Iso(M|[G]), using the full diagram of M as its info.

Assume \V = |.. Then there is a A% functor mapping presentations of countable
models of set theory to forcing extensions which preserves isomorphism.
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Forcing is sometimes a functorial process

Theorem (Hamkins—Miller-W.)

If M is a model of set theory there is a computable functor
Iso(M) — Iso(M[G]), using the full diagram of M as its info.

Observation

Assume . Then there is a A% functor mapping presentations of countable
models of set theory to forcing extensions which preserves isomorphism.

Question

@ Can there be an analytic (co-analytic) functorial method of producing
forcing extensions?

@ Does rule out a projective functorial method for
producing forcing extensions?
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Is forcing a computable procedure?

@ Given a presentation of a model of set theory we can compute its
forcing extension.
@ For special models we can do this in a functorial way.

Negative results
@ But this procedure is in general dependent upon the choice of
presentation.
That is, the procedure is computable in the model of set theory
equipped with an w-enumeration of its elements, not merely in the
model itself.
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Thank you!
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