
How hard is it compute a failure of the continuum hypothesis?

Julia Kameryn Williams

Bard College at Simon’s Rock

Logic Across Mathematics
2025 AWM Research Symposium

17 May 2025

Joint work with Joel David Hamkins (Notre Dame) and Russell Miller (CUNY).

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 1 / 19

Hey, you got set theory in my computable structure theory!
Hey, you got computable structure theory in my set theory!

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 2 / 19

An introduction to forcing: forcing the continuum hypothesis

We will force CH by adding an ω1-sequence G of all reals.

The poset Add(ω1, 1) consists of
conditions p which are possible
approximations to G : functions α→ 2 for
countable α. Stronger conditions are
longer binary sequences, which give more
information about G .

G will be an ω1-length binary sequence,
with every real coded at some point.

Not just any branch through the tree
Add(ω1, 1) will code every real.

To ensure this, we insist G be generic—it
must meet every dense set of conditions.

For any x : ω → 2 and any condition p
you can extend p to code x .

A closure property ensures no new reals
were added.

Genericity is important for more than just coding every real.

Genericity forces G 6∈ V.

Genericity will ensure that the forcing extension V[G] satisfies the axioms of ZFC.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 3 / 19

An introduction to forcing: forcing the continuum hypothesis

We will force CH by adding an ω1-sequence G of all reals.

The poset Add(ω1, 1) consists of
conditions p which are possible
approximations to G : functions α→ 2 for
countable α. Stronger conditions are
longer binary sequences, which give more
information about G .

G will be an ω1-length binary sequence,
with every real coded at some point.

Not just any branch through the tree
Add(ω1, 1) will code every real.

To ensure this, we insist G be generic—it
must meet every dense set of conditions.

For any x : ω → 2 and any condition p
you can extend p to code x .

A closure property ensures no new reals
were added.

Genericity is important for more than just coding every real.

Genericity forces G 6∈ V.

Genericity will ensure that the forcing extension V[G] satisfies the axioms of ZFC.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 3 / 19

An introduction to forcing: forcing the continuum hypothesis

We will force CH by adding an ω1-sequence G of all reals.

The poset Add(ω1, 1) consists of
conditions p which are possible
approximations to G : functions α→ 2 for
countable α. Stronger conditions are
longer binary sequences, which give more
information about G .

G will be an ω1-length binary sequence,
with every real coded at some point.

Not just any branch through the tree
Add(ω1, 1) will code every real.

To ensure this, we insist G be generic—it
must meet every dense set of conditions.

For any x : ω → 2 and any condition p
you can extend p to code x .

A closure property ensures no new reals
were added.

Genericity is important for more than just coding every real.

Genericity forces G 6∈ V.

Genericity will ensure that the forcing extension V[G] satisfies the axioms of ZFC.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 3 / 19

Building the forcing extension

Our ω1-sequence G doesn’t just code all reals, it also tells us how to build the
entire forcing extension V[G].

Recursively define names, which describe objects in the larger universe.

G says how to interpret names: ẋG is the interpretation of ẋ .

There are definable forcing relations p ϕ(ẋ , . . .) which control the
behavior of V[G]:

V[G] |= ϕ(ẋG , . . .)⇔ ∃p ∈ G p ϕ(ẋ , . . .)

Can use the genericity of G to check that the axioms of ZFC are preserved
in V[G].

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 4 / 19

An intuitive sketch of forcing, in general

A forcing poset P consists of possible
approximations to a new object G .

This G will be a generic filter ⊆ P.

Recursively defined P-names describe
objects in the extension.

Forcing relations p ϕ(ẋ , . . .) control the
behavior of V[G].

Three main parts of forcing:

Getting a generic G ;

Interpreting the names to build the forcing
extension;

Using the forcing relations to determine
satisfaction in the forcing extension.

The art is choosing P to force what you want.

CH Add(ω1, 1)
¬CH Add(ω, ω2)

Whitehead conj. Add(ω1, 1)
¬Whitehead conj. an ω2-iteration of ccc

forcings
Borel conj. an ω2-iteration of posets

of Laver trees
¬SCH Prikry forcing at a large

cardinal

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 5 / 19

An intuitive sketch of forcing, in general

A forcing poset P consists of possible
approximations to a new object G .

This G will be a generic filter ⊆ P.

Recursively defined P-names describe
objects in the extension.

Forcing relations p ϕ(ẋ , . . .) control the
behavior of V[G].

Three main parts of forcing:

Getting a generic G ;

Interpreting the names to build the forcing
extension;

Using the forcing relations to determine
satisfaction in the forcing extension.

The art is choosing P to force what you want.

CH Add(ω1, 1)
¬CH Add(ω, ω2)

Whitehead conj. Add(ω1, 1)
¬Whitehead conj. an ω2-iteration of ccc

forcings
Borel conj. an ω2-iteration of posets

of Laver trees
¬SCH Prikry forcing at a large

cardinal

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 5 / 19

The answer to the titular question: obviously not computable

Any computable process takes place entirely in V, so it’s not
possible to produce G .

Indeed, computation is absolute, so anything we could do in V[G]
must already be in the ground model.

We’re dealing with uncountable objects and transfinite recursion.

If you know about the boolean algebra approach to forcing, the same
problems recur.

Building a complete boolean algebra B from a poset P and
building a boolean topos VB from B are both infinitary processes.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 6 / 19

The answer to the titular question: obviously not computable

Any computable process takes place entirely in V, so it’s not
possible to produce G .

Indeed, computation is absolute, so anything we could do in V[G]
must already be in the ground model.

We’re dealing with uncountable objects and transfinite recursion.

If you know about the boolean algebra approach to forcing, the same
problems recur.

Building a complete boolean algebra B from a poset P and
building a boolean topos VB from B are both infinitary processes.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 6 / 19

The answer to the titular question: obviously not computable

Any computable process takes place entirely in V, so it’s not
possible to produce G .

Indeed, computation is absolute, so anything we could do in V[G]
must already be in the ground model.

We’re dealing with uncountable objects and transfinite recursion.

If you know about the boolean algebra approach to forcing, the same
problems recur.

Building a complete boolean algebra B from a poset P and
building a boolean topos VB from B are both infinitary processes.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 6 / 19

For the titular question to be nontrivial we must
mean something else.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 7 / 19

The multiverse of set theory

A standard approach in the model theory of set
theory is to look at countable models of set
theory.

Rich tools are available and there is a
robust multiverse to study.

The Rasiowa–Sikorski lemma implies
generics and thus forcing extensions over
countable models always exist.

Can think of a countable model of set
theory as ω equipped with a binary
relation ∈M .

This is also an appropriate setting for
computable structure theory.

Can formulate questions.
Given M = (ω,∈M) and a poset P ∈ M:

Can we compute a generic G?

Can we compute a representation of the
forcing extension M[G]?

Can we compute the elementary diagram
of M[G]?

Warning! No model of set theory can be
computable simpliciter; we can only ask about
computability relative to an oracle.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 8 / 19

The multiverse of set theory

A standard approach in the model theory of set
theory is to look at countable models of set
theory.

Rich tools are available and there is a
robust multiverse to study.

The Rasiowa–Sikorski lemma implies
generics and thus forcing extensions over
countable models always exist.

Can think of a countable model of set
theory as ω equipped with a binary
relation ∈M .

This is also an appropriate setting for
computable structure theory.

Can formulate questions.
Given M = (ω,∈M) and a poset P ∈ M:

Can we compute a generic G?

Can we compute a representation of the
forcing extension M[G]?

Can we compute the elementary diagram
of M[G]?

Warning! No model of set theory can be
computable simpliciter; we can only ask about
computability relative to an oracle.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 8 / 19

The multiverse of set theory

A standard approach in the model theory of set
theory is to look at countable models of set
theory.

Rich tools are available and there is a
robust multiverse to study.

The Rasiowa–Sikorski lemma implies
generics and thus forcing extensions over
countable models always exist.

Can think of a countable model of set
theory as ω equipped with a binary
relation ∈M .

This is also an appropriate setting for
computable structure theory.

Can formulate questions.
Given M = (ω,∈M) and a poset P ∈ M:

Can we compute a generic G?

Can we compute a representation of the
forcing extension M[G]?

Can we compute the elementary diagram
of M[G]?

Warning! No model of set theory can be
computable simpliciter; we can only ask about
computability relative to an oracle.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 8 / 19

Computing a generic G

Theorem (Hamkins–Miller–W.)

Given the atomic diagram of M = (ω,∈M)
and a poset P ∈ M you can compute a
generic G for P, given parameters.

The atomic diagram is simply the
relation ∈M .

Literally, P is an integer, not a set of
conditions. Its extension is
P∈ = {n ∈ ω : n ∈M P}, and by
computing G I mean as a subset of
P∈.

Proof: The usual proof of the Rasiowa–Sikorski
is effective.

A little more detail: Fix the integers which are
P, ≤P, 6≤P, ⊥P, D the collection of dense
subsets of P and this gives you the data needed
to carry out the construction.

Caution! Because we need to fix these integers
non-uniformity is introduced; an isomorphic
copy of the model will need to use a Turing
machine which looks at different integers.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 9 / 19

Computing a generic G

Theorem (Hamkins–Miller–W.)

Given the atomic diagram of M = (ω,∈M)
and a poset P ∈ M you can compute a
generic G for P, given parameters.

The atomic diagram is simply the
relation ∈M .

Literally, P is an integer, not a set of
conditions. Its extension is
P∈ = {n ∈ ω : n ∈M P}, and by
computing G I mean as a subset of
P∈.

Proof: The usual proof of the Rasiowa–Sikorski
is effective.

A little more detail: Fix the integers which are
P, ≤P, 6≤P, ⊥P, D the collection of dense
subsets of P and this gives you the data needed
to carry out the construction.

Caution! Because we need to fix these integers
non-uniformity is introduced; an isomorphic
copy of the model will need to use a Turing
machine which looks at different integers.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 9 / 19

Computing a generic G

Theorem (Hamkins–Miller–W.)

Given the atomic diagram of M = (ω,∈M)
and a poset P ∈ M you can compute a
generic G for P, given parameters.

The atomic diagram is simply the
relation ∈M .

Literally, P is an integer, not a set of
conditions. Its extension is
P∈ = {n ∈ ω : n ∈M P}, and by
computing G I mean as a subset of
P∈.

Proof: The usual proof of the Rasiowa–Sikorski
is effective.

A little more detail: Fix the integers which are
P, ≤P, 6≤P, ⊥P, D the collection of dense
subsets of P and this gives you the data needed
to carry out the construction.

Caution! Because we need to fix these integers
non-uniformity is introduced; an isomorphic
copy of the model will need to use a Turing
machine which looks at different integers.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 9 / 19

Computing a generic G

Theorem (Hamkins–Miller–W.)

Given the atomic diagram of M = (ω,∈M)
and a poset P ∈ M you can compute a
generic G for P, given parameters.

The atomic diagram is simply the
relation ∈M .

Literally, P is an integer, not a set of
conditions. Its extension is
P∈ = {n ∈ ω : n ∈M P}, and by
computing G I mean as a subset of
P∈.

Proof: The usual proof of the Rasiowa–Sikorski
is effective.

A little more detail: Fix the integers which are
P, ≤P, 6≤P, ⊥P, D the collection of dense
subsets of P and this gives you the data needed
to carry out the construction.

Caution! Because we need to fix these integers
non-uniformity is introduced; an isomorphic
copy of the model will need to use a Turing
machine which looks at different integers.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 9 / 19

Computing a generic G

Theorem (Hamkins–Miller–W.)

Given the atomic diagram of M = (ω,∈M)
and a poset P ∈ M you can compute a
generic G for P, given parameters.

The atomic diagram is simply the
relation ∈M .

Literally, P is an integer, not a set of
conditions. Its extension is
P∈ = {n ∈ ω : n ∈M P}, and by
computing G I mean as a subset of
P∈.

Proof: The usual proof of the Rasiowa–Sikorski
is effective.

A little more detail: Fix the integers which are
P, ≤P, 6≤P, ⊥P, D the collection of dense
subsets of P and this gives you the data needed
to carry out the construction.

Caution! Because we need to fix these integers
non-uniformity is introduced; an isomorphic
copy of the model will need to use a Turing
machine which looks at different integers.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 9 / 19

What can we compute from the atomic diagram?

All of the following predicates are not
uniformly r.i.c.e. in the atomic diagram.

x = ∅
x ⊆ y

x is an ordered pair

x is a function

x is an ordinal

x = ω

They are all ∆0 in the Lévy hierarchy:
they can be expressed using only bounded
quantifiers ∃x ∈ y and ∀x ∈ y . This is the
correct notion of the basic data of a
model of set theory.

Theorem (Hamkins–Miller–W.)

Let X be a subset of a model M of set theory.
TFAE:

There is a single c.e. operator which takes
the atomic diagram of a presentation of
M and outputs the copy of X for that
presentation. (X is uniformly r.i.c.e. in
the atomic diagram.)

Membership a ∈ X is witnessed by a finite
pattern of ∈ in the transitive closure of a,
with the list of patterns c.e. in the atomic
diagram.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 10 / 19

What can we compute from the atomic diagram?

All of the following predicates are not
uniformly r.i.c.e. in the atomic diagram.

x = ∅
x ⊆ y

x is an ordered pair

x is a function

x is an ordinal

x = ω

They are all ∆0 in the Lévy hierarchy:
they can be expressed using only bounded
quantifiers ∃x ∈ y and ∀x ∈ y . This is the
correct notion of the basic data of a
model of set theory.

Theorem (Hamkins–Miller–W.)

Let X be a subset of a model M of set theory.
TFAE:

There is a single c.e. operator which takes
the atomic diagram of a presentation of
M and outputs the copy of X for that
presentation. (X is uniformly r.i.c.e. in
the atomic diagram.)

Membership a ∈ X is witnessed by a finite
pattern of ∈ in the transitive closure of a,
with the list of patterns c.e. in the atomic
diagram.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 10 / 19

What can we compute from the atomic diagram?

All of the following predicates are not
uniformly r.i.c.e. in the atomic diagram.

x = ∅
x ⊆ y

x is an ordered pair

x is a function

x is an ordinal

x = ω

They are all ∆0 in the Lévy hierarchy:
they can be expressed using only bounded
quantifiers ∃x ∈ y and ∀x ∈ y . This is the
correct notion of the basic data of a
model of set theory.

Theorem (Hamkins–Miller–W.)

Let X be a subset of a model M of set theory.
TFAE:

There is a single c.e. operator which takes
the atomic diagram of a presentation of
M and outputs the copy of X for that
presentation. (X is uniformly r.i.c.e. in
the atomic diagram.)

Membership a ∈ X is witnessed by a finite
pattern of ∈ in the transitive closure of a,
with the list of patterns c.e. in the atomic
diagram.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 10 / 19

Computing the forcing extension M[G]

Theorem (Hamkins–Miller–W.)

Take the ∆0-diagram for M = (ω,∈M) as
an oracle fix a poset P ∈ M. Then we can
computably produce G an M-generic for P
and a copy of M[G].

More precisely, we can compute a relation
∈G ⊆ ω2 so that M[G] ∼= (ω,∈ M[G]) and
we can compute the canonical embedding
M ↪→ M[G].

Proof sketch: Everything we need is ∆1 and
hence computable in the ∆0 diagram.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 11 / 19

Computing the forcing extension M[G]

Theorem (Hamkins–Miller–W.)

Take the ∆0-diagram for M = (ω,∈M) as
an oracle fix a poset P ∈ M. Then we can
computably produce G an M-generic for P
and a copy of M[G].

More precisely, we can compute a relation
∈G ⊆ ω2 so that M[G] ∼= (ω,∈ M[G]) and
we can compute the canonical embedding
M ↪→ M[G].

Proof sketch: Everything we need is ∆1 and
hence computable in the ∆0 diagram.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 11 / 19

Computing the elementary diagram

Theorem (Hamkins–Miller–W.)

Suppose we have the elementary diagram
of M = (ω,∈M) as an oracle and P ∈ M
is a poset. Then we can computably
produce G an M-generic for P and the
elementary diagram of a copy of M[G].

This also goes level by level. From the
Σn-diagram we can compute the
Σn-diagram for a copy of the extension.

Proof sketch: The map ϕ 7→ “p ϕ” sending
a formula to the corresponding forcing relation
is computable, and we use the forcing relations
to compute the elementary diagram.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 12 / 19

Computing the elementary diagram

Theorem (Hamkins–Miller–W.)

Suppose we have the elementary diagram
of M = (ω,∈M) as an oracle and P ∈ M
is a poset. Then we can computably
produce G an M-generic for P and the
elementary diagram of a copy of M[G].

This also goes level by level. From the
Σn-diagram we can compute the
Σn-diagram for a copy of the extension.

Proof sketch: The map ϕ 7→ “p ϕ” sending
a formula to the corresponding forcing relation
is computable, and we use the forcing relations
to compute the elementary diagram.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 12 / 19

Forcing is a computable procedure

Forcing is a computable procedure, with the level of information given as an
oracle determining what we can compute about the extension.

Given the atomic diagram for M = (ω,∈M) and a poset P ∈ M we can
compute a generic G for P (using parameters).

Given the ∆0-diagram we can moreover compute a copy of the extension
M[G] and its ∆0-diagram.

Given the Σn-diagram we can compute the Σn-diagram of the extension.

Given the elementary diagram we can compute the elementary diagram of
the extension.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 13 / 19

So about that non-uniformity

The construction of G proceeded by searching through the
conditions in P and the dense subsets of P.

A different presentation of M will give a different order for the
search, and produce a different G .

In general, there will be 2ℵ0 many possible G ’s, so the M[G] can’t
all be the same.

Altogether this tells us there is a non-uniformity to the process.

Can we get uniformity by a different process?

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 14 / 19

So about that non-uniformity

The construction of G proceeded by searching through the
conditions in P and the dense subsets of P.

A different presentation of M will give a different order for the
search, and produce a different G .

In general, there will be 2ℵ0 many possible G ’s, so the M[G] can’t
all be the same.

Altogether this tells us there is a non-uniformity to the process.

Can we get uniformity by a different process?

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 14 / 19

Making the notion of uniformity precise: functoriality

For a structure M let Iso(M) denote the
category of isomorphic copies of M, with
isomorphisms as its morphisms.

A process to interpret N in M gives a map
F : Iso(M)→ Iso(N).

If F preserves isomorphisms then it is a
functor.

So asking for a uniform procedure to
construct M[G] from M amounts to
asking for a functor
F : Iso(M)→ Iso(M[G]).

As computable structure theorists we don’t
want just any functor.

A functor F is computable if there is a
Turing functional Φ which given info
about an isomorphism M → M∗ as an
oracle will compute an isomorphism
F (M)→ F (M∗).

(HTMMM 2017) There is a computable
functor F : Iso(M)→ Iso(N) iff N is
effectively interpretable in M.

(HTMM 2018) If F : Iso(M)→ Iso(N) is
Baire-measurable then there is an
infinitary interpretation I of N in M so
that F is naturally isomorphic to FI .

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 15 / 19

Making the notion of uniformity precise: functoriality

For a structure M let Iso(M) denote the
category of isomorphic copies of M, with
isomorphisms as its morphisms.

A process to interpret N in M gives a map
F : Iso(M)→ Iso(N).

If F preserves isomorphisms then it is a
functor.

So asking for a uniform procedure to
construct M[G] from M amounts to
asking for a functor
F : Iso(M)→ Iso(M[G]).

As computable structure theorists we don’t
want just any functor.

A functor F is computable if there is a
Turing functional Φ which given info
about an isomorphism M → M∗ as an
oracle will compute an isomorphism
F (M)→ F (M∗).

(HTMMM 2017) There is a computable
functor F : Iso(M)→ Iso(N) iff N is
effectively interpretable in M.

(HTMM 2018) If F : Iso(M)→ Iso(N) is
Baire-measurable then there is an
infinitary interpretation I of N in M so
that F is naturally isomorphic to FI .

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 15 / 19

Making the notion of uniformity precise: functoriality

For a structure M let Iso(M) denote the
category of isomorphic copies of M, with
isomorphisms as its morphisms.

A process to interpret N in M gives a map
F : Iso(M)→ Iso(N).

If F preserves isomorphisms then it is a
functor.

So asking for a uniform procedure to
construct M[G] from M amounts to
asking for a functor
F : Iso(M)→ Iso(M[G]).

As computable structure theorists we don’t
want just any functor.

A functor F is computable if there is a
Turing functional Φ which given info
about an isomorphism M → M∗ as an
oracle will compute an isomorphism
F (M)→ F (M∗).

(HTMMM 2017) There is a computable
functor F : Iso(M)→ Iso(N) iff N is
effectively interpretable in M.

(HTMM 2018) If F : Iso(M)→ Iso(N) is
Baire-measurable then there is an
infinitary interpretation I of N in M so
that F is naturally isomorphic to FI .

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 15 / 19

Forcing is not a functorial process

Theorem (Hamkins–Miller–W.)

If ZFC is consistent there is M |= ZFC so that there is no computable
functor Iso(M)→ Iso(M[G]).

Indeed (Schlicht + HMW), can rule out a Borel functor mapping
models to forcing extensions, even if we weaken “isomorphic” to
“elementarily equivalent”.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 16 / 19

Forcing is not a functorial process

Theorem (Hamkins–Miller–W.)

If ZFC is consistent there is M |= ZFC so that there is no computable
functor Iso(M)→ Iso(M[G]).

Indeed (Schlicht + HMW), can rule out a Borel functor mapping
models to forcing extensions, even if we weaken “isomorphic” to
“elementarily equivalent”.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 16 / 19

Forcing is sometimes a functorial process

Theorem (Hamkins–Miller–W.)

If M is a pointwise-definable model of set theory there is a computable functor
Iso(M)→ Iso(M[G]), using the full diagram of M as its info.

Observation

Assume V = L. Then there is a ∆1
2 functor mapping presentations of countable

models of set theory to forcing extensions which preserves isomorphism.

Question

Can there be an analytic (co-analytic) functorial method of producing
forcing extensions?

Does projective determinacy rule out a projective functorial method for
producing forcing extensions?

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 17 / 19

Forcing is sometimes a functorial process

Theorem (Hamkins–Miller–W.)

If M is a pointwise-definable model of set theory there is a computable functor
Iso(M)→ Iso(M[G]), using the full diagram of M as its info.

Observation

Assume V = L. Then there is a ∆1
2 functor mapping presentations of countable

models of set theory to forcing extensions which preserves isomorphism.

Question

Can there be an analytic (co-analytic) functorial method of producing
forcing extensions?

Does projective determinacy rule out a projective functorial method for
producing forcing extensions?

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 17 / 19

Is forcing a computable procedure?

Positive results

Given a presentation of a model of set theory we can compute its
forcing extension.

For special models we can do this in a functorial way.

Negative results

But this procedure is in general dependent upon the choice of
presentation.

That is, the procedure is computable in the model of set theory
equipped with an ω-enumeration of its elements, not merely in the
model itself.

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 18 / 19

Thank you!
Joel David Hamkins, Russell Miller, and Kameryn Julia Williams, “Forcing as a
computational process”, to appear: Computability.
Preprint: arXiv:2007.00418 [math.LO].

Matthew Harrison-Trainor, Alexander Melkinov, Russell Miller, and Antonio
Montalbán, “Computable functors and effective interpretability”, JSL 82.1 (2017).

Matthew Harrison-Trainor, Russell Miller, and Antonio Montalbán, “Borel functors
and infinitary interpretations”, JSL 83.4 (2018).

Julia Kameryn Williams (BCSR) How hard is it to compute a failure of CH? Logic Across Mathematics 17 May 2025 19 / 19

https://arxiv.org/abs/2007.00418

