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What does it mean to be infinite?

X is finite if |X | < ω. Otherwise X is infinite.

X is infinite iff |X | ≥ n for all n < ω.

This isn’t circular, because we can define ω by its induction properties.
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Dedekind’s analysis

X is Dedekind-infinite if there is
f : X → X a non-surjective injection.

X is Dedekind-finite if any injection
f : X → X is a surjection.

X is Dedekind-infinite iff ω ≤ |X |.
(⇐) Push forward the +1 function on ω.

(⇒) Fix z ∈ X \ ran f . Then the map
n 7→ f n(z) gives an injection ω → X .

Use fact that f is one-to-one to
inductively prove this map is an injection.
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Are they the same?

Yes

, assuming ACω.

If X is Dedekind-infinite then ω ≤ |X | so
X is infinite.

If X is infinite, for each n an injection
en : n→ X . Inductively glue them
together into an injection e : ω → X .

Dedekind-infinite implies infinite goes
through in ZF.

Infinite implies Dedekind-infinite
needs a small fragment of AC.

Theorem (Cohen 1963)

It is consistent with ZF that there exists a
Dedekind-finite, infinite set.

But you can’t get a reversal: there’s
no hope the non-existence of a DFI
set implies AC because the former is
local while the latter is global.
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The first question

Question

Is there a suitable generalization of a Dedekind-finite, infinite set
whose nonexistence gives a characterization of AC?
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A look back in history

What we’ve seen is the state of the art for the 1910s.

In the late 1910s, Bertrand Russell is a few years after the last
volume of Principia Mathematica. His time is occupied by legal
troubles over his pacifism during World War I and thinking about
the foundations of mathematics.

Working with him are multiple students, including Dorothy
Wrinch.

The next decade (1923) she will publish a paper answering our
first question.
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Dorothy Wrinch

Born 1894, died 1976.

Studied logic under Russell, did her doctorate (1921) under
applied mathematician John Nicholson.

Wrote in a range of subjects: logic, pure mathematics, philosophy
of science, and mathematical biology.

Was awarded a Rockefeller Foundation fellowship to support her
work in mathematical biology.

Early career was in the UK, later emigrated to the USA. Latter
years of her career were at Smith College (Mass, USA).

Had the misfortune of being on the losing side of a scientific
dispute with Linus Pauling over the structure of proteins.
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Wrinch’s question, and mine

Question

Is there a suitable generalization of a Dedekind-finite, infinite set
whose nonexistence gives a characterization of AC?

Question

Can we use modern techniques to prove more precise consistency
results?
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Cardinals sans choice

Notation:

κ, λ, . . . will be used for well-orderable,
infinite cardinals.

p, q, . . . will be used for cardinals in
general.

I’ll sometimes use p to refer to an
arbitrary set of cardinality p.

Under AC, every cardinal is well-orderable.
We can thus define the cardinals as the
initial ordinals.

Without AC we have to fall back on
defining cardinals as equivalence classes.

Can use Scott’s trick to make these sets.
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Mediate cardinals

Fix a cardinal p. Then X is p-mediate if

q ≤ |X | for all q < p;

p 6≤ |X |; and

|X | 6≤ p.

A p-mediate cardinal is a cardinal number of a
p-mediate set.

Mediate means p-mediate for some infinite p.

Dedekind-finite infinite ⇔ ℵ0-mediate.

ZF proves there are no n-mediate for finite
n.
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A few facts

Some facts about DFI sets generalize.

Fact

Suppose q and r are p-mediate. Then:

q + r is p-mediate;

q · r is p-mediate; and

22
q

is not p-mediate.
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Wrinch’s theorem

Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

1 AC;

2 There are no mediate cardinals; and

3 There are no κ-mediate cardinals for well-ordered κ.

(Wrinch originally formulated this result in the framework of Principia
Mathematica.)
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Wrinch’s theorem, (1⇒ 2)

Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

1 AC;

2 There are no mediate cardinals; and

3 There are no κ-mediate cardinals for
well-ordered κ.

Definition

m is p-mediate if

q ≤ m for all q < p;

p 6≤ m; and

m 6≤ p.

Prove (1⇒ 2) by contrapositive.

Suppose q is p mediate. Then p and q are
incomparable, so Cardinal Trichotomy
fails.

(Hartogs 1915) AC iff Cardinal
Trichotomy.
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Wrinch’s theorem, (3⇒ 1)

Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

1 AC;

2 There are no mediate cardinals; and

3 There are no κ-mediate cardinals for
well-ordered κ.

Definition

m is p-mediate if

q ≤ m for all q < p;

p 6≤ m; and

m 6≤ p.

(2⇒ 3) is trivial. Prove (3⇒ 1) by
contrapositive.

(Hartogs) For any p there is a smallest
well-orderable cardinal ℵ(p) so that
ℵ(p) 6≤ p.

If p is not well-orderable then p is
ℵ(p)-mediate.
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Dependent choice

Dependent choice (DC) informally says you can
make ω many choices where each choice
depends on the previous ones.

Suppose R is a relation on a set X so that
for each x ∈ X there is y ∈ X with x R y .
Then there is a branch 〈xi : i ∈ ω〉
through R: for each i have xi R xi+1.

DCκ says:

Suppose R is a relation on X<κ × X so
that for each s ∈ X<κ there is y ∈ X with
s R y .
Then there is a branch b = 〈xi : i < κ〉
through R: for each i have (b � i) R bi .

DC<κ is DCλ for all λ < κ.

Facts:

AC is equivalent to ∀κ DCκ.

λ < κ implies DCκ ⇒ DCλ.

ZF + DC<κ + ¬DCκ is consistent.

DC implies ACω over ZF, but not vice
versa.

DC is equivalent to “a relation is
well-founded iff it has no infinite
descending sequence”.

(Solovay) ZF + DC + “every set of reals is
Lebesgue-measurable” is consistent.
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DC and mediate cardinals

Lemma: DCκ implies there are no κ-mediates.

Suppose λ ≤ p for all λ < κ but p 6≤ κ.

Consider the collection of all injections α→ p for α < p.

None of the injections are onto, so you can always extend them to
an injection α + 1→ p.

By DCκ there’s a branch, which gives an injection κ→ p.
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Refining mediacy

Observation:

If p is κ-mediate and λ > κ then
p + λ is λ+-mediate.

So if you have κ-mediates for one κ
you have mediates for larger
cardinals.

Definition

m is p-mediate if

q ≤ m for all q < p;

p 6≤ m; and

m 6≤ p.

p is exact κ-mediate if

p is κ-mediate and

if Y ⊆ p has cardinality < κ then p \ Y is
κ-mediate.

Lemma: If p is κ-mediate where κ is smallest
such that κ-mediates exist, then p is exact
κ-mediate.
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Consistency questions

Question

Consistently, what can be the smallest κ so that κ-mediates exist?

Consistently, what can be the class of κ for which exact
κ-mediates exist?
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Symmetric extensions

Motivating example: Add ω many reals, then
forget the order you added them.

P = Add(ω, ω) is the poset. Conditions
are finite partial functions ω × ω → 2.

Changing the order is permuting the
columns in the ω × ω grid.

Any permutation π : ω → ω generates an
automorphism of P:
πp(n, i) = p(πn, i).

Also generates an automorphism on the
P-names:
πẋ = {(πp, πẏ) : (p, ẏ) ∈ ẋ}

“Forgetting the order” is restricting to
names fixed by a ‘large’ group of
automorphisms:
A group H of automorphisms is large if
there is finite e ⊆ ω so that each π ∈ H
fixes e pointwise: H ⊇ fix(e).

This gives a normal filter F on the lattice
of subgroups.

A name ẋ is F-symmetric if
sym(ẋ) = {π : πẋ = ẋ} ∈ F .

The symmetric extension consists of the
interpretations of all hereditarily
symmetric names.
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Symmetric extensions, in general

A symmetric system is (P,G ,F) so that

P is a forcing poset;

G ≤ Aut(P); and

F is a normal filter on the lattice of
subgroups of G .

A P-name ẋ is symmetric if sym x ∈ F .

(Symmetry lemma) p 
 ϕ(ẋ) iff
πp 
 ϕ(πẋ).

The symmetric extension by (P,G ,F) via a
generic g ⊆ P:

Consists of the interpretations of
hereditarily symmetric names.

V[g/F ] = {ẋg : ẋ is hereditarily
symmetric}.

V[g/F ] |= ZF, but the point is to make AC fail
in a controlled way.

K. Williams (BCSR) Mediate cardinals CUNY Set Theory Seminar (2024 Apr 5) 20 / 30



Symmetric extensions, in general

A symmetric system is (P,G ,F) so that

P is a forcing poset;

G ≤ Aut(P); and

F is a normal filter on the lattice of
subgroups of G .
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subgroups of G .

A P-name ẋ is symmetric if sym x ∈ F .

(Symmetry lemma) p 
 ϕ(ẋ) iff
πp 
 ϕ(πẋ).
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The Cohen symmetric extension

Fix regular κ and assume κ<κ = κ.

Pκ = Add(κ, κ);

Gκ ≤ Aut(Pκ) is generated by
permutations of κ;

H ∈ Fκ if ∃e ∈ [κ]<κ so that fix(e) ⊆ H.

In V[gκ/Fκ] the set A = {ci : i < κ} for
Cohen subsets of κ is not well-orderable.

Facts:

Pκ is κ-closed and has the κ+-cc.

Fκ is κ-complete.

Thus, (Pκ,Gκ,Fκ) will preserve DC<κ.

In particular, there will be no λ-mediates for
λ < κ.
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Symmetric extensions and DC

Lemma: Let κ be regular and λ < κ. If P is κ-closed
and F is κ-complete then (P,G ,F) preserves DCλ.

Consider appropriate R ⊆ X<λ × X in V[g/F ]. We
need a branch through R in V[g/F ].

By κ-closure λ remains a cardinal in V[g ].

In V[g ], by DCλ there is a branch b = 〈xi : i < λ〉.
Each xi comes from a symmetric name ẋi .

By κ-completeness H =
∧

i<λ sym(ẋi ) is in F .

Can get a name ḃ for b with sym(ḃ) ⊇ H.

So the branch b is in V[g/F ].
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The smallest mediate can be anything

Theorem (W.)

Suppose κ = κ<κ is regular. In the
symmetric extension by (Pκ,Gκ,Fκ):

DC<κ;

κ is least so that there is a κ-mediate
cardinal; and

There is an exact λ-mediate iff λ = κ.

We’ve already seen DC<κ and so there are
no λ-mediates for λ < κ.

Claim: Let A be the set of the Cohen
subsets of κ added by Pκ. Then
V[g/Fκ] |= A is κ-mediate.

Like getting DFI set in (Pω,Gω,Fω).

λ < κ injects by κ-closure of Pκ and
κ-completeness of Fκ
|A| 6≤ κ because A can’t be well-ordered.

κ 6≤ |A|:
Suppose ḟ is hereditarily symmetric,
sym(f ) ⊇ fix(e), and p 
 ḟ : κ→ A is
one-to-one.
Extend p to q deciding ḟ (α) = ci for
some α 6= i both 6∈ e.
Find π fixing e ∪ {i}, moving α, and
q ‖ πq.
So q ∪ πq 
 ḟ is not one-to-one.
Contradiction.
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The smallest mediate can be anything

Theorem (W.)

Suppose κ = κ<κ is regular. In the
symmetric extension by (Pκ,Gκ,Fκ):

DC<κ;

κ is least so that there is a κ-mediate
cardinal; and

There is an exact λ-mediate iff λ = κ.

Lemma: If X is exact λ-mediate for
λ > κ in V[g/Fκ], then V[g ] |= λ ≤ |X |.

Work in V[g ]:

Consider the tree of hereditarily symmetric
names for injections α→ X for α < λ.

Lemma implies the tree has a branch.

But why should the branch be in
V[g/Fκ]?

Branch has size λ > κ and |F| = κ, so λ
many names ḟα on the branch have the
same sym(ḟα).

Can build a branch b so every injection on
branch has same sym(ḟα).

Then b has a hereditarily symmetric name.

Thus V[g/Fκ] |= λ ≤ |X |. Contradiction.
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Doing it more than once

When a set theorist can do something once, she wants to do it more
than once. With forcing, she accomplishes this using products or
iterations.

Karagila has a framework for iterations of symmetric extensions.

It’s complicated, with scary group theoretic objects like wreath
products.

We are lucky and can get away with products, where the details
are significantly less technical.
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Products of symmetric extensions

Suppose (P,G ,F) and (Q,H, E) are symmetric
systems. Can define their product
(P,G ,F)× (Q,H, E):

P×Q is usual product of posets;

G × H is generated by (π, ρ) with π ∈ G ,
ρ ∈ H; and

F ×E is generated by G0 ×H0 for G0 ∈ F
and H0 ∈ E .

Like with forcing, we have a product lemma
stating that the extension by the product is the
same as the two-step extensions, in either
order.

Can also do this for infinite products, with a
notion of support.

Suppose (Pκ,Gκ,Fκ) are symmetric
systems for κ ∈ M.

Then there is a product∏
κ∈M(Pκ,Gκ,Fκ) with that support.

Again we get a product lemma stating we
can split the full extension into two-step
extensions.
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Refining earlier ideas

In a two-step symmetric extension, the intermediate step won’t satisfy
AC. So we need to look more carefully at our assumptions.

Suppose λ < κ are regular.

(ZF + DCκ) If P is κ-closed and F is κ-complete then (P,G ,F)
preserves DCλ.

(ZF + DCκ) Suppose P has the λ+-cc and F is generated by a
basis of size ≤ λ. Then V[g/F ] |= there are no exact κ-mediates.
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The pattern of the exact mediates

Theorem (W.)

Assume GCH and fix a class M of regular
cardinals. Do the Easton support product
of the (Pκ,Gκ,Fκ) for κ ∈ M. In the
symmetric extension, there is an exact
α-mediate iff α ∈ M.

Sketch:

P>α is α-closed and F>α is α-complete.

P<α has the α+-cc and F<α is generated
by a basis of cardinality ≤ α.

In V[g>α/F>α]: DCα is true. So there are
no α-mediates.

In V[g>α/F>α][g<α/F<α]: there are no
exact α-mediates.

So the only way there could be an exact
α-mediate is if it was added by
(Pα,Gα,Fα) for α ∈ M.

But we already know that adds an exact
mediate.
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Open questions

What’s up with singular cardinals?

What if we don’t make such strong cardinal arithmetic
assumptions?

What happens if AC fails badly in the ground model?
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Thank you!

Dorothy Wrinch, “On mediate cardinals”, American Journal of
Mathematics, Vol. 45, No. 2. (1923). pp. 87–92.
DOI: 10.2307/2370490.

Kameryn J. Williams, “Mediate cardinals: old and new”, In
preparation.

Landon D.C. Elkind, “I like her very much—she has very good
brains.”: Dorothy Wrinch’s Influence on Bertrand Russell, In:
Bertrand Russell, Feminism, and Women Philosophers in his
Circle, eds. Elkind & Klein. (2024). pp. 259–297.

K. Williams (BCSR) Mediate cardinals CUNY Set Theory Seminar (2024 Apr 5) 30 / 30

https://doi.org/10.2307/2370490

