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A nuanced and detailed history of the calculus

“Using infinitesimals I can
do differentiation and
integration”

“Leibniz was right all along.
Using model theory we can
make infinitesimal calculus
mathematically rigorous.”

“Balderdash. Your ghosts of
departed quantities are
nothing more than division
by zero in a beaglepuss, and
your so-called calculus is
nonsense.”
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Nonstandard analysis in a nutshell

Use the model-theoretic notion of an ultrapower to embed R into
a saturated elementary extension ∗R.

Any standard object f on R has a nonstandard extension ∗f
with the same elementary properties.

You can transfer properties in ∗R back to R.

The first big new result using NSA was:

(Bernstein & Robinson 1966) Any polynomially compact
operator on a Hilbert space has an invariant subspace.

R

- 0

∗R

0
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It’s not just for analysts

Looking at an embedding A ↪→ ∗A can be done for any mathematical
structure A.

For example, Robinson and others figured out how to express basic
topological properties like compactness in terms of embedding a
topological space X into ∗X .

This isn’t always useful.

But one place it’s been fruitful is in integer combinatorics.

(Jin’s sumset theorem, 2001) If A,B ⊆ N have positive Banach density
then A + B is piecewise syndetic.

This is the application of nonstandard methods we’ll care about for the rest
of the hour.

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 4 / 23



It’s not just for analysts

Looking at an embedding A ↪→ ∗A can be done for any mathematical
structure A.

For example, Robinson and others figured out how to express basic
topological properties like compactness in terms of embedding a
topological space X into ∗X .

This isn’t always useful.

But one place it’s been fruitful is in integer combinatorics.

(Jin’s sumset theorem, 2001) If A,B ⊆ N have positive Banach density
then A + B is piecewise syndetic.

This is the application of nonstandard methods we’ll care about for the rest
of the hour.

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 4 / 23



It’s not just for analysts

Looking at an embedding A ↪→ ∗A can be done for any mathematical
structure A.

For example, Robinson and others figured out how to express basic
topological properties like compactness in terms of embedding a
topological space X into ∗X .

This isn’t always useful.

But one place it’s been fruitful is in integer combinatorics.

(Jin’s sumset theorem, 2001) If A,B ⊆ N have positive Banach density
then A + B is piecewise syndetic.

This is the application of nonstandard methods we’ll care about for the rest
of the hour.

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 4 / 23



It’s not just for analysts

Looking at an embedding A ↪→ ∗A can be done for any mathematical
structure A.

For example, Robinson and others figured out how to express basic
topological properties like compactness in terms of embedding a
topological space X into ∗X .

This isn’t always useful.

But one place it’s been fruitful is in integer combinatorics.

(Jin’s sumset theorem, 2001) If A,B ⊆ N have positive Banach density
then A + B is piecewise syndetic.

This is the application of nonstandard methods we’ll care about for the rest
of the hour.

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 4 / 23



What does ∗N even look like?

∗N is a discretely ordered semiring.
Elementarity: Any property of N expressed just by quantifying over numbers is true in ∗N.

Saturation: If a sequence of elementary properties ϕ0(x), ϕ1(x), . . . is finitely consistent in N,
then you can find nonstandard α so all ϕn(α) hold simultaneously.

∗N

0 1 2 3 · · ·

)

N

α
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2α± Z

⌊
α
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⌋
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α
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⌋
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⌊
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3α
4

⌋
a dense linear order of Z-blocks
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∗N has the additive identity 0 as its least element, because ∀n 0 ≤ n is true in N.

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 5 / 23



What does ∗N even look like?

∗N is a discretely ordered semiring.
Elementarity: Any property of N expressed just by quantifying over numbers is true in ∗N.

Saturation: If a sequence of elementary properties ϕ0(x), ϕ1(x), . . . is finitely consistent in N,
then you can find nonstandard α so all ϕn(α) hold simultaneously.

∗N

0 1

2 3 · · ·

)

N

α

α± Z

2α

2α± Z

⌊
α
2

⌋
⌊
α
2

⌋
± Z

⌊
3α
2

⌋⌊
3α
4

⌋
a dense linear order of Z-blocks

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 5 / 23



What does ∗N even look like?

∗N is a discretely ordered semiring.
Elementarity: Any property of N expressed just by quantifying over numbers is true in ∗N.

Saturation: If a sequence of elementary properties ϕ0(x), ϕ1(x), . . . is finitely consistent in N,
then you can find nonstandard α so all ϕn(α) hold simultaneously.

∗N

0 1 2

3 · · ·

)

N

α

α± Z

2α

2α± Z

⌊
α
2

⌋
⌊
α
2

⌋
± Z

⌊
3α
2

⌋⌊
3α
4

⌋
a dense linear order of Z-blocks

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 5 / 23



What does ∗N even look like?

∗N is a discretely ordered semiring.
Elementarity: Any property of N expressed just by quantifying over numbers is true in ∗N.

Saturation: If a sequence of elementary properties ϕ0(x), ϕ1(x), . . . is finitely consistent in N,
then you can find nonstandard α so all ϕn(α) hold simultaneously.

∗N

0 1 2 3

· · ·

)

N

α

α± Z

2α

2α± Z

⌊
α
2

⌋
⌊
α
2

⌋
± Z

⌊
3α
2

⌋⌊
3α
4

⌋
a dense linear order of Z-blocks

“∀n n < 3 iff n = 0 or n = 1 or n = 1 + 1” is true in N
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N embeds as an initial segment into ∗N. The new elements are all hyperfinite.
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If α ∈ ∗N \ N then α > n for all n ∈ N.
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All non-zero elements have a predecessor
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α + n < α + α = 2α for all n ∈ N.
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If P ⊆ N is your favorite set of primes, there’s nonstandard α so that p | α iff p ∈ P.

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 5 / 23



What does ∗N even look like?

∗N is a discretely ordered semiring.
Elementarity: Any property of N expressed just by quantifying over numbers is true in ∗N.
Saturation: If a sequence of elementary properties ϕ0(x), ϕ1(x), . . . is finitely consistent in N,
then you can find nonstandard α so all ϕn(α) hold simultaneously.

∗N

0 1 2 3 · · ·

)

N

α

α± Z

2α

2α± Z

⌊
α
2

⌋
⌊
α
2

⌋
± Z

⌊
3α
2

⌋⌊
3α
4

⌋
a dense linear order of Z-blocks

If P ⊆ N is your favorite set of primes, there’s nonstandard α so that p | α iff p ∈ P.
Therefore ∗N is uncountable.
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Some important transfer properties

Elementarity: Any property of N you can
express just by quantifying over numbers
is true in ∗N.

Saturation: If a sequence of elementary
properties ϕ0(x), ϕ1(x), . . . is finitely
consistent in N, then you can find
nonstandard α so all ϕn(α) hold
simultaneously.

Useful special cases of elementarity:

Preservation of partitions:
If Π = {X0, . . . ,Xn} is a finite partition of
N, then ∗Π = {∗X0, . . . ,

∗Xn} is a finite
partition of ∗N.

Characterization of infinite:
X ⊆ N is infinite iff there is some
nonstandard α ∈ ∗X .

Preservation of finiteness:
If X is finite then so is ∗X = {∗x : x ∈ X}.
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Enough preliminaries, let’s take this for a drive
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The pigeonhole principle

Theorem (Pigeonhole Principle)

If you partition N into finitely many pieces
X0, . . . ,Xn then one of the pieces is
infinite.

Proof:

Consider α ∈ ∗N \ N.
∗X0, . . . ,

∗Xn are a partition of ∗N.

So α is in some ∗Xi .

So Xi is infinite.
N

α
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Iterating the ∗ map

I lied earlier when I said nonstandard methods work by embedding N into ∗N.

Actually we embed Vω(N) into a
saturated elementary extension.

Vω(N) = N ∪ P(N) ∪ P(P(N)) ∪ · · ·
The ultrafilter used to construct the
extension is an element of Vω(N).

So ∗Vω(N) is a subset of Vω(N).

So ∗N is in the domain of the embedding.

We can apply the ∗ map to ∗N itself.

If α ∈ ∗N \ N then α < ∗α.

And we can iterate:

N ↪→ ∗N ↪→ ∗(2)N ↪→ · · · ↪→ ∗(k)N ↪→ · · ·
N

Vω(N)

∗N

∗Vω(N)
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Ramsey’s theorem

Theorem (Ramsey 1930)

Partition [N]k into finitely many pieces
X0, . . . ,Xn. Then there is infinite H ⊆ N so
that [H]k ⊆ Xi for some i.

Proof (k = 3):

Consider α ∈ ∗N \ N.

Then 〈α, ∗α, ∗(2)α〉 is in some ∗(3)Xi .

A∅ = {a ∈ N : 〈a, α, ∗α〉 ∈ ∗(2)Xi}.
∗A∅ = {a ∈ ∗N : 〈a, ∗α, ∗(2)α〉 ∈ ∗(3)Xi}.
α ∈ ∗A∅, so A∅ is infinite

h0 is the minimum member of A∅.

Do an induction:

Already built Hi = 〈h0, . . . , hi 〉.
t ∈ [Hi ]

2: At = {a ∈ N : taa ∈ Xi}.
t ∈ [Hi ]

1: At = {a ∈ N : ta〈a, α〉 ∈ ∗Xi}.
Inductively, α ∈ ∗At for each t ∈ [Hi ]

<3.

α ∈
⋂

t∈[Hi ]<3

∗At = ∗

 ⋂
t∈[Hi ]<3

At

.

So the intersection of all At is infinite.

Pick hi+1 > hi from that intersection.

Finally H = 〈hi 〉 is monochromatic.
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Already built Hi = 〈h0, . . . , hi 〉.
t ∈ [Hi ]

2: At = {a ∈ N : taa ∈ Xi}.
t ∈ [Hi ]

1: At = {a ∈ N : ta〈a, α〉 ∈ ∗Xi}.
Inductively, α ∈ ∗At for each t ∈ [Hi ]

<3.

α ∈
⋂

t∈[Hi ]<3

∗At = ∗

 ⋂
t∈[Hi ]<3

At

.

So the intersection of all At is infinite.

Pick hi+1 > hi from that intersection.

Finally H = 〈hi 〉 is monochromatic.
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Compare to standard proofs of Ramsey’s theorem

Also goes by induction. At stage i , have built up Hi an initial segment
of the monochromatic H.

For t ∈ [Hi ]
<3, have At is the set of ways you can extend t to get a

tuple of the correct color.

Hard part: Showing you always have room to expand, viz. that the
intersection of the At is infinite, in such a way that you don’t muck
this up for future steps.

Need to do some bookkeeping to ensure you can arrange this.

The hyperobjects α and 〈α, ∗α, ∗(2)α〉 do this bookkeeping for us.

“I do not think that a scientific result which gives us a better understanding of the world and
makes it more harmonious in our eyes should be held in lower esteem than an invention which
improves household plumbing.” –Alfred Tarski (paraphrased)
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Generalizing Ramsey to families of sets of nonuniform size

Definition

The Schreier barrier S consists of all
s ∈ [N]<ω so that |s| = min s + 1.

The first element of s tells you how
long s is.

You can think of S as a tagged
amalgamation of (copies of) all [N]k .

∅

0

1

2
...

[N \ 2]1

[N \ 3]2
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A Ramsey property for the Schreier barrier

Theorem (Nash-Williams for S)

Partition S into finitely many pieces.
Then there is infinite H ⊆ N so that
S � H is monochromatic.

S � H = {s ∈ S : s ⊆ H}
S = {s ∈ [N]<ω : |s| = min s + 1}

For [N]k we looked at what piece of the
partition contained 〈α, ∗α, . . . , ∗(k−1)α〉
But now we don’t know in advance how
long a sequence in S will be

Intuitively, we want to look at

〈α, ∗α, . . . ∗(α)α〉

But this is nonsensical—what would it
even mean to iterate ∗ a hyperfinite
number of times?
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A proxy for 〈α, ∗α, . . . ∗(α)α〉

Fact: Fix α ∈ ∗N. There is (a non-unique) σ(α) so that for any set X

σ(α) ∈ ∗X ⇔ α ∈ ∗{k ∈ N : 〈α, . . . , ∗(k−1)α〉 ∈ ∗(k)X}.

This σ(α) is a proxy for 〈α, ∗α, . . . , ∗(α)α〉.

Just like 〈α, ∗α, ∗(2)α〉 was used to guide our choices to construct a
monochromatic set for [N]3,

Use σ(α) to guide the choices to build a monochromatic set for the
Schreier barrier.

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 14 / 23



A proxy for 〈α, ∗α, . . . ∗(α)α〉

Fact: Fix α ∈ ∗N. There is (a non-unique) σ(α) so that for any set X

σ(α) ∈ ∗X ⇔ α ∈ ∗{k ∈ N : 〈α, . . . , ∗(k−1)α〉 ∈ ∗(k)X}.

This σ(α) is a proxy for 〈α, ∗α, . . . , ∗(α)α〉.

Just like 〈α, ∗α, ∗(2)α〉 was used to guide our choices to construct a
monochromatic set for [N]3,

Use σ(α) to guide the choices to build a monochromatic set for the
Schreier barrier.

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 14 / 23



Further generalization: fronts

F ⊆ [N]<ω is a front if

(antichain or Nash-Williams property)
distinct elements of F cannot be initial
segments of each other

(density)
any infinite b ⊆ N has an initial segment
in F

Examples:

[N]k for any k

The Schreier barrier S

To prove a Ramsey property for [N]k and S we
had an idea of what a generic nonstandard
member looked like, based on how the front
was built up.

〈α, . . . , ∗(k−1)α〉 for [N]k

σ(α), a proxy for 〈α, . . . , ∗(α)α〉 for S
If we want to do the same for an arbitrary front
F we need to understand how F is built up.
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The Nash-Williams theorem for Ellentuck space

Theorem (Nash-Williams theorem)

Let F be a front. Partition F into finitely
many pieces. Then there is infinite H ⊆ N so
that F � H is monochromatic.

F � H = {s ∈ F : s ⊆ H}

Fronts can be understood as inductively
built up from simpler fronts.

Inductively along the tree of subfronts of
F you can build up a hyperobject σF (α).

Use σF (α) to guide the choices to build a
monochromatic set for F .

The Point: Do the same proof as for Ramsey’s
theorem, but with a fancier object to guide the
induction.
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The topological in topological Ramsey theory

It was realized that a lot of combinatorial
theorems about N could be understood as
expressing different facets of a certain
topological space.

Ellentuck space E has multiple components.

The points are infinite subsets of N.

You can associate to each point its k-th
finite approximation in [N]k .

There is a partial order ⊆ on points.

The Ellentuck topology on E is generated by
basic open sets

[t,X ] = {Y ∈ E : Y ⊆ X and t v Y }.

Get a connection between topology and
combinatorics:

X ⊆ E is Ramsey if you can refine any
basic open set be either contained in or
disjoint from X .

X ⊆ E is Ramsey null if it is Ramsey and
you can always refine to be disjoint from
X .

Fact: Any Baire subset of E is Ramsey
and any meager subset is Ramsey null.

Indeed any Souslin-measurable or Borel
subset is Ramsey.

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 17 / 23



The topological in topological Ramsey theory

It was realized that a lot of combinatorial
theorems about N could be understood as
expressing different facets of a certain
topological space.

Ellentuck space E has multiple components.

The points are infinite subsets of N.

You can associate to each point its k-th
finite approximation in [N]k .

There is a partial order ⊆ on points.

The Ellentuck topology on E is generated by
basic open sets

[t,X ] = {Y ∈ E : Y ⊆ X and t v Y }.

Get a connection between topology and
combinatorics:

X ⊆ E is Ramsey if you can refine any
basic open set be either contained in or
disjoint from X .

X ⊆ E is Ramsey null if it is Ramsey and
you can always refine to be disjoint from
X .

Fact: Any Baire subset of E is Ramsey
and any meager subset is Ramsey null.

Indeed any Souslin-measurable or Borel
subset is Ramsey.

K. Williams (Simon’s Rock) A nonstandard approach TATERS (2023 Nov) 17 / 23



Abstract Ramsey spaces

Ellentuck space E has some nice properties.

(A.1) Sequencing: points behave like infinite
sequences.

(A.2) Finitization: you can port the partial
order ⊆ to the finite approximations,
and each approximation has a finite
number of predecessors.

(A.3) Amalgamation: [this one’s more
technical].

(A.4) Pigeonhole: as it says in the name.

A Ramsey space is a tuple (R,AR,≤, r)
satisfying (A.1–4) where R are the points,
r : R× N→ AR is the finite approximation
map, and ≤ is the partial order.

You can put an Ellentuck topology on R,
and get a topology ⇔ combinatorics
connection.
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The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)

Suppose R is closed (in the product topology on AR). Then
any front on the finite approximations AR satisfies a Ramsey
partition property.

I’d like to say our nonstandard proof of the
Nash-Williams theorem extends directly to the full
abstract Nash-Williams theorem.

But we need the space to be amenable to nonstandard
methods.

And we don’t (yet?) have a proof that this applies to
every nontrivial Ramsey space.
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What we do have for the abstract Nash-Williams theorem

Under an extra assumption the nonstandard proof goes through.

Theorem (Partial abstract Nash-Williams)

Consider a front F on AR. Suppose

AR is infinitely branching everywhere; and

There is a filter C on R so that for each s ∈ T (F) \ F the
restriction of succ s to C is a nonprincipal ultrafilter on succ s.

Then F satisfies a Ramsey partition property.

(R,≤) is a poset, so the usual definition of filter applies to C
succ s � X = {t ∈ succ s : ∃k t ≤fin rk(X )}
succ s � C = {succ s � X : X ∈ C}
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Positive examples

Any Ramsey space which can be thought of as its (k + 1)-th approximations
coming from k-th approximations by concatenating sequences from (cofinite
subsets of) a countable alphabet will satisfy the extra assumption we need.

Ellentuck space

The Milliken space of block sequences

The Hales–Jewett space of variable words

The space Eω(N) of equivalence relations on N with infinite quotients

What else?
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Continuing work

The abstract Nash-Williams theorem isn’t the only theorem in abstract
Ramsey theory.

What other results are amenable to nonstandard methods?
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Thank you!
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