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Overview

1 A look at a line of questions in my area,

2 Leading into where my work fits into this larger project,

3 With a little bit about my research as a whole.

K. Williams (SHSU) The universal algorithm & potentialism (2023 Feb 6) 2 / 31



A very accurate and nuanced history of the foundations of computation

Find an algorithm to solve the
Entscheidungsproblem*.

No.

* (Given a logical formula determine whether it is true in all structures.)
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In a bit more detail

The strategy to show an algorithm solves the Entscheidungsproblem is straightforward:
exhibit the algorithm and check it does what you want.

But how to show that there can be no such algorithm?

Need an abstract notion of algorithm so that you can do math with this definition.

Alonzo Church (1936), Alan Turing (1936), and others gave formalizations, which turn
out to be equivalent.

And since then there has been an explosion in equivalent characterizations, e.g. (an idealized

version of) your favorite programming language.

An advantage to giving a talk in 2023 is that computers are so ubiquitous I don’t need to
give you the formal definition of a Turing machine (TM).
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Turing reduced the Entscheidungsproblem to the halting problem

Theorem (Turing)

There is no Turing machine which accepts as input a TM p and input n for p and determines
whether or not p will halt on n and produce an answer.

Hard part! Turing showed that TMs are powerful enough to do computations involving
other TMs. Indeed, he showed there is a universal machine which can simulate any TM.

Other hard part! Turing’s conceptual analysis to argue that his formalization correctly
captures the intuitive notion of computability.

Easy part! Do a diagonalization argument.

K. Williams (SHSU) The universal algorithm & potentialism (2023 Feb 6) 5 / 31



Turing reduced the Entscheidungsproblem to the halting problem

Theorem (Turing)

There is no Turing machine which accepts as input a TM p and input n for p and determines
whether or not p will halt on n and produce an answer.

Hard part! Turing showed that TMs are powerful enough to do computations involving
other TMs. Indeed, he showed there is a universal machine which can simulate any TM.

Other hard part! Turing’s conceptual analysis to argue that his formalization correctly
captures the intuitive notion of computability.

Easy part! Do a diagonalization argument.

K. Williams (SHSU) The universal algorithm & potentialism (2023 Feb 6) 5 / 31



Turing reduced the Entscheidungsproblem to the halting problem

Theorem (Turing)

There is no Turing machine which accepts as input a TM p and input n for p and determines
whether or not p will halt on n and produce an answer.

Hard part! Turing showed that TMs are powerful enough to do computations involving
other TMs. Indeed, he showed there is a universal machine which can simulate any TM.

Other hard part! Turing’s conceptual analysis to argue that his formalization correctly
captures the intuitive notion of computability.

Easy part! Do a diagonalization argument.

K. Williams (SHSU) The universal algorithm & potentialism (2023 Feb 6) 5 / 31



The easy part: the diagonalization argument

Toward a contradiction suppose H is a TM which decides whether or not p halts on input n.
Let’s build a new TM D.

DH
〈p, p〉

p

yes or no

if yes
loop

if no
yes

Now ask: what happens when D is input to D?
Then it halts iff it doesn’t. E
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From computability theory to proof theory

Let’s talk about another kind of undecidability: proof theoretic, instead of
computability theoretic.

And then we’ll see how the two kinds of undecidability relate.

K. Williams (SHSU) The universal algorithm & potentialism (2023 Feb 6) 7 / 31



A very accurate and nuanced history of the incompleteness theorems

Find axioms that decide all questions of natural
number arithmetic.

No.
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The incompleteness theorems

Peano arithmetic (PA) axiomatizes natural number arithmetic: axioms of discretely ordered
semirings + induction axioms.

Theorem (Gödel’s first and second incompleteness theorems)

1 No computably axiomatizable extension of PA is complete. There must be an arithmetic
statement it neither proves nor disproves.

2 PA can neither prove nor disprove the consistency of PA.

Hard part! (Arithmetization) Gödel showed that logical formulae can be coded as natural
numbers, so statements about logic and proof can be coded as statements about natural
numbers.

Easy part! (Self-reference) Do a diagonalization argument.

We need the restriction. True arithmetic TA—the set of all truths of N—is complete.
(Moreover, the low basis theorem implies that there are complete extensions of PA which are arithmetically definable, specifically, ∆2 in the arithmetical hierarchy.)
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Arithmetization

Gödel’s beta lemma states that arbitrary finite sequences can be coded as a single
number, and this is provable within PA.

Thus any finite mathematical object can be coded in arithmetic.

What is a finite semiring? It’s a tuple 〈R,+,×〉 satisfying certain axioms. Represent R by a
sequence of its elements and + and × by sequences giving their multiplication tables. So you
can write an arithmetic formula which expresses “n codes a finite semiring”.

+ 1 a b 0
1 1 1 1 1
a 1 a 1 a
b 1 1 b b
0 1 a b 0

× 1 a b 0
1 1 a b 0
a a a 0 0
b b 0 b 0
0 0 0 0 0

More relevant to this talk, objects like Turing machines or logical formulae can be coded in
arithmetic.

Statements like “PA does not prove 0 = 1” or “such and such Turing machine halts” can
be cast as statements in arithmetic.
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Arithmetization

(Taken with permission from Victoria Gitman’s lecture notes for Mathematical Logic, Spring 2013.)
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Incompleteness and Turing machines

The incompleteness theorems can be recast as saying that whether certain Turing machines
halt is undecidable.

A TM p:

Look at all length 1 proofs from the first 1
axiom of PA.

Then look at all length 2 proofs from the
first 2 axioms of PA.
...

If at any point you see a proof that ends
with 0 = 1, halt and output affirmatively.

Whether p halts is independent of PA.

Adam Yedidia and Scott Aaronson do
even better.

They constructed a TM of size 7910 so
that whether it halts is independent of
ZFC, but ZFC + large cardinals does
prove it halts.
(Specifically an ineffable cardinal will do.)
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If you liked Gödel’s incompleteness theorems, you’ll love his completeness
theorem

Theorem (Gödel’s Completeness Theorem)

1 A set of axioms T is consistent if and only if there is a structure satisfying T .

2 ϕ is a theorem of T if and only if ϕ is true in every structure satisfying T .

(This is for axioms in first-order logic.)

This lets us translate talk about proofs, consistency, etc. to talk about structures.

The incompleteness theorems plus the completeness theorem together imply there must
be non-isomorphic structures satisfying the axioms of arithmetic.

What could these even look like???
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Nonstandard models of arithmetic

A model of (Peano) arithmetic is a discretely ordered semiring (M,+,×, <) whose definable
subsets are inductive.

M

0 1 2 3 · · ·

)

N

e

e ± Z

2e

2e ± Z

⌊
e
2

⌋
⌊
e
2

⌋
± Z

⌊
3e
2

⌋⌊
3e
4

⌋
a dense linear order of Z-blocks

X ⊆ M is definable if you can express x ∈ X just by quantifying over the elements of M
and using the semiring operations and order of M.

X ⊆ M is inductive if 0 ∈ X and a ∈ X ⇒ a + 1 ∈ X implies X = M.
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M has a least element 0M (= the additive identity for M) because the set {x ∈ M : x ≥ 0M}
satisfies the inductive hypotheses.
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N embeds as an initial segment on any model of arithmetic.
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If e ∈ M \ N then e > n for all n ∈ N.
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All non-zero elements have a predecessor because

{0} ∪ {a ∈ M : a has a predecessor}

satisfies the induction hypotheses.
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Facts about nonstandard models of arithmetic

First constructed by Thoralf Skolem in the 1920s. (Skolem used an ultrapower construction.)

There are many different nonisomorphic models of arithmetic of any infinite cardinality. In
particular, there are 2ℵ0 isomorphism classes for countable models of arithmetic.

If M is countable, then its ordertype is exactly N + Z ·Q. (Because Q is the unique
countable dense linear order without endpoints.)

In particular, all countable nonstandard models of arithmetic are order-isomorphic.

Open Question (Harvey Friedman): N has the property that if a model of arithmetic is
order-isomorphic to it then they are fully isomorphic. Does any other model of arithmetic
have this property?

(Stanley Tennenbaum) If M is nonstandard then neither the + nor × of M is a
computable function.
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Turing machines in a nonstandard world

M)

N

p

p2 + 2 = 4q

s

p0 = 1q

t

Consider p the TM which enumerates the theorems of arithmetic.

s is a computation log witnessing that p outputs p2 + 2 = 4q.
(s is a number coding the sequence of computation steps. Checking that s has this property only requires looking in N.)

If we run p in N, then we never output p0 = 1q.

But what if we run p in nonstandard M which thinks arithmetic is inconsistent?

Then there is a computation log t witnessing that p outputs p0 = 1q. But t must be
nonstandard!

The point: By moving to a larger world we made p output more numbers.
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The absoluteness of computability

In summary:

The statement “the TM p outputs n for some input” is upward absolute—if it’s true it
stays true if we end-extend to a larger model.

Logicians call this a Σ1 statement. (By the MRDP theorem, these are the statements equivalent to one whose only quantifiers

are a block of ∃s.)

Peano arithmetic proves every true (i.e. in N) statement of this form.

But the statement “the TM p does not output n for some input” is not upward absolute.
It is downward absolute though.

Logicians call this a Π1 statement.

Both the first and second incompleteness theorems are about statements of this form.
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Woodin’s universal algorithm (2011)

We’ve seen that the behavior of a Turing machine can
be undecidable.

Proof theoretic: It may be independent of PA how
p behaves.

Model theoretic: Running p in different
nonstandard models of arithmetic may produce
different behavior.

I want to talk about a striking case of the undecidability
of how Turing machines behave, due to W. Hugh
Woodin, where p can output anything at all if run in the
right universe!
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Woodin’s universal algorithm, first form

Theorem (Woodin)

There is a Turing machine p with the following properties.

1 p provably enumerates a finite sequence.

2 Running p inside N never produces any output, i.e. it enumerates the empty sequence.

3 But, for any finite sequence s of natural numbers there is a nonstandard model of
arithmetic M so that running p in M enumerates exactly s.
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Woodin’s algorithm
(This construction for Woodin’s theorem is due to Joel David Hamkins.)

The Turing machine p:

p searches through the proofs of Peano arithmetic, looking at the theorems they prove.

p is looking for a theorem of the form “p does not enumerate the sequence s”, for s
some nonempty finite sequence of numbers.
(p can refer to itself by the Kleene recursion theorem.)

If p ever sees this, then p outputs the sequence s.

Claim: Run in N, p outputs the empty sequence.

Otherwise p outputs some s. So Peano arithmetic proves this true Σ1 statement. But by the
definition of p, this also means that Peano arithmetic proves that p does not output s. This
would mean that Peano arithmetic is inconsistent. But it’s not.
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Checking the extension property

Definition (The Turing machine p)

p searches through the proofs of Peano arithmetic, looking for a theorem of the form “p
does not enumerate the sequence s”, for s some nonempty sequence of numbers.

If p ever sees this, then p outputs the sequence s.

Fix a finite sequence of natural numbers s. We want to find a nonstandard model of
arithmetic M in which running p outputs s.

Claim: Peano arithmetic + “p outputs s” is consistent.

Otherwise “p does not output s” is a theorem of Peano arithmetic. But then running p in N
would output a nonempty sequence. We just saw that is not the case.

So by the completeness theorem there is a model of arithmetic in which p outputs s.
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Woodin’s universal algorithm, general form

Theorem (Woodin)

There is a Turing machine p with the following properties.

1 p provably enumerates a finite sequence.

2 Running p inside N never produces any output, i.e. it
enumerates the empty sequence.

3 Suppose M a model of arithmetic in which p enumerates s
and that s∗ is a sequence in M which extends s. Then we
can end-extend M to a larger model of arithmetic M∗ in
which p enumerates s∗.

M

M∗

s

s∗

Proof idea: Do a similar argument, but internally to M. Need some more technical lemmata
to check that the argument can be arithmetized.
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A connection to philosophy: arithmetic potentialism

...
...

...

Imagine climbing through the tree of nonstandard models of
arithmetic, continually end-extending.

This potentialist system gives a nonstandard twist on Aristotle’s notion
of the potential infinite.

There is a natural interpretation in modal logic—extend ordinary logic
by adding two new operators

ϕ means ϕ is necessarily true—true in all extensions.
ϕ means ϕ is possibly true—true in some extension.

(Hamkins) Can use Woodin’s universal algorithm to calculate which
modal assertions are valid (true in any world under any substitution of
variables).
Namely, those in the modal theory S4.

K. Williams (SHSU) The universal algorithm & potentialism (2023 Feb 6) 23 / 31



Where my research fits into this project

The model theory of arithmetic is about
understanding the universe of finite
mathematical objects.

If we want to understand the universe of
infinitary mathematical objects, then
that’s the model theory of set theory.

Is there a version of Woodin’s universal
algorithm for the world of infinitary
mathematics?

My specialization is in set theory, the
branch of mathematics whose major
themes are the higher infinite,
well-foundedness, and transfinite
constructions.

Some of my research is in pure set theory,
e.g. in aspects of Cohen’s method of
forcing and set-theoretic geology.

The model theory of sets has been a
recurring topic, from my dissertation
work∗ to my most recent pre-print†.

∗
(Kameryn J. Williams, “Minimum models of second-order set theories”, The Journal of Symbolic Logic (2019).)

†
(Alfredo Roque Freire & Kameryn J. Williams, “Non-tightness in class theory and second-order arithmetic”, under review.)
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The universal finite sequence, basic version

Theorem (Hamkins–W.)

There is a Σ1 definition for a finite sequence s so that:

1 ZF, the basic axioms of set theory, proves s is a finite sequence.

2 If M is a well-founded model of ZF then its s is the empty
sequence.

3 If M is a countable model of ZF with s as its sequence and s∗ is
any finite sequence in M extending s then there is a end-extension
M∗ |= ZF of M whose sequence is s∗.

M

M∗

s

s∗

At core this is a similar sort of diagonal argument, but in a more difficult setting and needing
more technology.

(Joel David Hamkins & Kameryn J. Williams, “The Σ1-definable universal finite sequence, The Journal of Symbolic Logic (2021).)
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Set-theoretic potentialism

Like how Woodin’s universal algorithm enables an analysis of arithmetic potentialism, the
universal finite sequence enables an analysis of set-theoretic potentialism.

ϕ is true at M if ϕ is true at some extension of M
ϕ is true at M if ϕ is true at every extension of M

Corollary (Hamkins–W.)

The modal logic of end-extensional set-theoretic potentialism is exactly S4.
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Class-theoretic potentialism

In another project,∗ a coauthor and I investigate potentialism in the context of class theory.

Some collections, such as the collection V
of all sets, are too big to be sets subject
to the usual rules.

But you can avoid paradox if you disallow
these too big collections—proper
classes—from being elements of other
collections.

The first formal treatment was given by
von Neumann, and the topic has seen
renewed interest in the past decade.

This is an interdisciplinary project: we’re
concerned with both mathematical results
about these systems and how they inform
philosophical debates within the
philosophy of mathematics.

∗
(Neil Barton & Kameryn J. Williams, “Varieties of class-theoretic potentialism”, under review.)
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Modal model theory, and student research

Most of the extant work in potentialism has been on topics within logic.

But this is a general framework.

Suppose you have a class of mathematical structures, ordered by a substructure relation.
(For example: groups, graphs, semirings.) Then there is an interpretation of modal logic in this context:

ϕ is true at M if ϕ is true at some extension of M
ϕ is true at M if ϕ is true at every extension of M

Hamkins and Wo loszyn (2020) looked a bit at the general theory and the specific case of
graphs, but the area is wide open and little is known.

This is a good topic for student research: it’s approachable with little background in
model theory.

Last semester, I mentored an undergrad on a topic in this area, studying the modal model
theory of special classes of graphs (triangle-free, etc.).
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Applications of logic: nonstandard methods

An application of model theory from
Abraham Robinson (1960s).

The idea: embed a mathematical
structure M in a saturated elementary
extension ∗M. Facts about M carry
upward to ∗M, and the transfer principle
lets you go in the other direction.

Robinson looked at R ↪→ ∗R, in
nonstandard analysis.

Since the 1980s, N ↪→ ∗N has been
fruitfully used to study the combinatorics
of N.
(E.g. you can prove Ramsey’s theorem by a nonstandard argument.)

In an ongoing project with Tim Trujillo
we’ve been looking using nonstandard
methods in topological Ramsey theory.

We have a nonstandard proof of the
classical Nash-Williams partition theorem,
and extensions of it to a more general
setting.
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Applications of logic: nonstandard methods and ultrafilters

Closely related to nonstandard methods
are ultrafilters.

Originally studied by Ulam in the context
of measure theory, ultrafilters were taken
up by logicians and became a central
object in both set theory and model
theory.

Arguments using the ultrapower M ↪→ ∗M
can be reformulated directly to use
ultrafilters.

And ultrafilters enjoy other application,
e.g. the Galvin–Glazer proof of Hindman’s
theorem using idempotent ultrafilters.

With Trujillo, we also have an ultrafilter
version of our proof of the Nash-Williams
theorem.

Future work: More applications of
nonstandard methods and ultrafilters to
other areas of mathematics.

Future work: More generally, I’m
interesting in building connections
between logic and other areas of
mathematics.
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Thank you!
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