The universal algorithm, the universal finite sequence, and potentialism

Kameryn J. Williams (they/them)

SHSU

SHSU Colloquium 2023 Feb 6

K. Williams (SHSU)

The universal algorithm & potentialism

(2023 Feb 6) 1 / 31

- A look at a line of questions in my area,
- Leading into where my work fits into this larger project,
- With a little bit about my research as a whole.

< □ > < 同

A very accurate and nuanced history of the foundations of computation

Find an algorithm to solve the *Entscheidungsproblem**.

* (Given a logical formula determine whether it is true in all structures.)

(2023 Feb 6) 3 / 31

- The strategy to show an algorithm solves the *Entscheidungsproblem* is straightforward: exhibit the algorithm and check it does what you want.
- But how to show that there can be no such algorithm?

< □ > < 同

- The strategy to show an algorithm solves the *Entscheidungsproblem* is straightforward: exhibit the algorithm and check it does what you want.
- But how to show that there can be no such algorithm?
- Need an abstract notion of algorithm so that you can do math with this definition.
- Alonzo Church (1936), Alan Turing (1936), and others gave formalizations, which turn out to be equivalent.
- And since then there has been an explosion in equivalent characterizations, e.g. (an idealized version of) your favorite programming language.

- The strategy to show an algorithm solves the *Entscheidungsproblem* is straightforward: exhibit the algorithm and check it does what you want.
- But how to show that there can be no such algorithm?
- Need an abstract notion of algorithm so that you can do math with this definition.
- Alonzo Church (1936), Alan Turing (1936), and others gave formalizations, which turn out to be equivalent.
- And since then there has been an explosion in equivalent characterizations, e.g. (an idealized version of) your favorite programming language.
- An advantage to giving a talk in 2023 is that computers are so ubiquitous I don't need to give you the formal definition of a Turing machine (TM).

Theorem (Turing)

There is no Turing machine which accepts as input a TM p and input n for p and determines whether or not p will halt on n and produce an answer.

Theorem (Turing)

There is no Turing machine which accepts as input a TM p and input n for p and determines whether or not p will halt on n and produce an answer.

• Hard part! Turing showed that TMs are powerful enough to do computations involving other TMs. Indeed, he showed there is a universal machine which can simulate any TM.

• Easy part! Do a diagonalization argument.

Theorem (Turing)

There is no Turing machine which accepts as input a TM p and input n for p and determines whether or not p will halt on n and produce an answer.

- Hard part! Turing showed that TMs are powerful enough to do computations involving other TMs. Indeed, he showed there is a universal machine which can simulate any TM.
- Other hard part! Turing's conceptual analysis to argue that his formalization correctly captures the intuitive notion of computability.
- Easy part! Do a diagonalization argument.

The easy part: the diagonalization argument

Toward a contradiction suppose H is a TM which decides whether or not p halts on input n. Let's build a new TM D.

(2023 Feb 6) 6 / 31

The easy part: the diagonalization argument

Toward a contradiction suppose H is a TM which decides whether or not p halts on input n. Let's build a new TM D.

Now ask: what happens when D is input to D? Then it halts iff it doesn't. \pounds

K. Williams (SHSU)

(2023 Feb 6) 6 / 31

Let's talk about another kind of undecidability: proof theoretic, instead of computability theoretic.

And then we'll see how the two kinds of undecidability relate.

A very accurate and nuanced history of the incompleteness theorems

Find axioms that decide all questions of natural number arithmetic.

K. Williams (SHSU)

The universal algorithm & potentialism

(2023 Feb 6) 8 / 31

The incompleteness theorems

Peano arithmetic (PA) axiomatizes natural number arithmetic: axioms of discretely ordered semirings + induction axioms.

Theorem (Gödel's first and second incompleteness theorems)

- No computably axiomatizable extension of PA is complete. There must be an arithmetic statement it neither proves nor disproves.
- **2** PA can neither prove nor disprove the consistency of PA.

The incompleteness theorems

Peano arithmetic (PA) axiomatizes natural number arithmetic: axioms of discretely ordered semirings + induction axioms.

Theorem (Gödel's first and second incompleteness theorems)

- No computably axiomatizable extension of PA is complete. There must be an arithmetic statement it neither proves nor disproves.
- **2** PA can neither prove nor disprove the consistency of PA.
- Hard part! (Arithmetization) Gödel showed that logical formulae can be coded as natural numbers, so statements about logic and proof can be coded as statements about natural numbers.
- Easy part! (Self-reference) Do a diagonalization argument.

The incompleteness theorems

Peano arithmetic (PA) axiomatizes natural number arithmetic: axioms of discretely ordered semirings + induction axioms.

Theorem (Gödel's first and second incompleteness theorems)

- No computably axiomatizable extension of PA is complete. There must be an arithmetic statement it neither proves nor disproves.
- **2** PA can neither prove nor disprove the consistency of PA.
- Hard part! (Arithmetization) Gödel showed that logical formulae can be coded as natural numbers, so statements about logic and proof can be coded as statements about natural numbers.
- Easy part! (Self-reference) Do a diagonalization argument.

We need the restriction. True arithmetic TA—the set of all truths of \mathbb{N} —is complete.

(Moreover, the low basis theorem implies that there are complete extensions of PA which are arithmetically definable, specifically, Δ_2 in the arithmetical hierarchy.) $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Arithmetization

- Gödel's beta lemma states that arbitrary finite sequences can be coded as a single number, and this is provable within PA.
- Thus any finite mathematical object can be coded in arithmetic.
 - What is a finite semiring? It's a tuple $\langle R, +, \times \rangle$ satisfying certain axioms. Represent R by a sequence of its elements and + and \times by sequences giving their multiplication tables. So you can write an arithmetic formula which expresses "n codes a finite semiring".

+	1	а	Ь	0	\times	1	а	Ь	0
1	1	1	1	1	1	1	а	Ь	0
а	1	а	1	а	а	а	а	0	0
Ь	1	1	Ь	Ь	Ь	Ь	0	Ь	0
0	1	а	Ь	0	0	0	0	0	0

Arithmetization

- Gödel's beta lemma states that arbitrary finite sequences can be coded as a single number, and this is provable within PA.
- Thus any finite mathematical object can be coded in arithmetic.
 - What is a finite semiring? It's a tuple $\langle R, +, \times \rangle$ satisfying certain axioms. Represent R by a sequence of its elements and + and \times by sequences giving their multiplication tables. So you can write an arithmetic formula which expresses "n codes a finite semiring".

+	1	а	Ь	0	\times	1	а	Ь	0
1	1	1	1	1	1	1	а	b	0
а	1	а	1	а	а	а	а	0	0
Ь	1	1	Ь	Ь	Ь	Ь	0	Ь	0
0	1	а	b	0	0	0	0	0	0

- More relevant to this talk, objects like Turing machines or logical formulae can be coded in arithmetic.
- Statements like "PA does not prove 0 = 1" or "such and such Turing machine halts" can be cast as statements in arithmetic.

K. Williams (SHSU)

Arithmetization

0 substituted for $[s]_0$, and φ with $[s]_0 + 1$ substituted for $[s]_0$. Now for the gory details. We define the relation PA(x), expressing that x is the Gödel-number of a Peano axiom by the formula

$$\begin{split} x &= n_1 \vee \dots \vee x = n_{15} \vee \\ \exists y, s \subseteq x \exists n \leq s \begin{pmatrix} \operatorname{Form}(y) \wedge \operatorname{len}(s) = n \wedge \\ \forall i < \operatorname{len}(n) \operatorname{Free}(y, [s]_i) \wedge \forall j \leq y(\operatorname{Free}(y, j) \to \exists k \leq s \, [s]_k = j) \wedge \\ \exists t \subseteq s \exists u, w \begin{pmatrix} \operatorname{len}(t) = \operatorname{len}(s) - 1 \wedge \forall i < \operatorname{len}(t) \, [t]_i = [s]_{i+1} \wedge \\ u = \operatorname{Sub}(y, [s]_0, \ulcorner \urcorner \urcorner \land w = \operatorname{Sub}(y, [s]_0, \ulcorner [s]_0 + 1 \urcorner) \wedge \\ x = \ulcorner (\forall t \, (u \wedge (\forall [s]_0 \, (y \to w) \to \forall [s]_0 \, y))) \urcorner \end{pmatrix} \end{pmatrix}. \end{split}$$

(Taken with permission from Victoria Gitman's lecture notes for Mathematical Logic, Spring 2013.)

Sac

メロト メポト メヨト メヨト

Incompleteness and Turing machines

The incompleteness theorems can be recast as saying that whether certain Turing machines halt is undecidable.

A TM *p*:

- Look at all length 1 proofs from the first 1 axiom of PA.
- Then look at all length 2 proofs from the first 2 axioms of PA.

• :

 If at any point you see a proof that ends with 0 = 1, halt and output affirmatively.

Whether p halts is independent of PA.

Incompleteness and Turing machines

The incompleteness theorems can be recast as saying that whether certain Turing machines halt is undecidable.

- A TM *p*:
 - Look at all length 1 proofs from the first 1 axiom of PA.
 - Then look at all length 2 proofs from the first 2 axioms of PA.
 - :
 - If at any point you see a proof that ends with 0 = 1, halt and output affirmatively.

Whether p halts is independent of PA.

- Adam Yedidia and Scott Aaronson do even better.
- They constructed a TM of size 7910 so that whether it halts is independent of ZFC, but ZFC + large cardinals does prove it halts.

(Specifically an ineffable cardinal will do.)

If you liked Gödel's incompleteness theorems, you'll love his completeness theorem

Theorem (Gödel's Completeness Theorem)

- A set of axioms T is consistent if and only if there is a structure satisfying T.
- **2** φ is a theorem of T if and only if φ is true in every structure satisfying T.

(This is for axioms in first-order logic.)

- This lets us translate talk about proofs, consistency, etc. to talk about structures.
- The incompleteness theorems plus the completeness theorem together imply there must be non-isomorphic structures satisfying the axioms of arithmetic.

If you liked Gödel's incompleteness theorems, you'll love his completeness theorem

Theorem (Gödel's Completeness Theorem)

- A set of axioms T is consistent if and only if there is a structure satisfying T.
- **2** φ is a theorem of T if and only if φ is true in every structure satisfying T.

(This is for axioms in first-order logic.)

- This lets us translate talk about proofs, consistency, etc. to talk about structures.
- The incompleteness theorems plus the completeness theorem together imply there must be non-isomorphic structures satisfying the axioms of arithmetic.

What could these even look like???

A model of (Peano) arithmetic is a discretely ordered semiring $(M, +, \times, <)$ whose definable subsets are inductive.

M ------

- X ⊆ M is definable if you can express x ∈ X just by quantifying over the elements of M and using the semiring operations and order of M.
- $X \subseteq M$ is inductive if $0 \in X$ and $a \in X \Rightarrow a + 1 \in X$ implies X = M.

A model of (Peano) arithmetic is a discretely ordered semiring $(M, +, \times, <)$ whose definable subsets are inductive.

M has a least element 0^M (= the additive identity for *M*) because the set $\{x \in M : x \ge 0^M\}$ satisfies the inductive hypotheses.

A model of (Peano) arithmetic is a discretely ordered semiring $(M, +, \times, <)$ whose definable subsets are inductive.

 $\ensuremath{\mathbb{N}}$ embeds as an initial segment on any model of arithmetic.

A model of (Peano) arithmetic is a discretely ordered semiring $(M, +, \times, <)$ whose definable subsets are inductive.

If $e \in M \setminus \mathbb{N}$ then e > n for all $n \in \mathbb{N}$.

A model of (Peano) arithmetic is a discretely ordered semiring $(M, +, \times, <)$ whose definable subsets are inductive.

All non-zero elements have a predecessor because

```
\{0\} \cup \{a \in M : a \text{ has a predecessor}\}
```

satisfies the induction hypotheses.

K. Williams (SHSU)

(2023 Feb 6) 14 / 31

A model of (Peano) arithmetic is a discretely ordered semiring $(M, +, \times, <)$ whose definable subsets are inductive.

e + n < e + e = 2e for all $n \in \mathbb{N}$.

Nonstandard models of arithmetic

A model of (Peano) arithmetic is a discretely ordered semiring $(M, +, \times, <)$ whose definable subsets are inductive.

Facts about nonstandard models of arithmetic

- First constructed by Thoralf Skolem in the 1920s. (Skolem used an ultrapower construction.)
- There are many different nonisomorphic models of arithmetic of any infinite cardinality. In particular, there are 2^{ℵ0} isomorphism classes for countable models of arithmetic.

- First constructed by Thoralf Skolem in the 1920s. (Skolem used an ultrapower construction.)
- There are many different nonisomorphic models of arithmetic of any infinite cardinality. In particular, there are 2^{ℵ0} isomorphism classes for countable models of arithmetic.
- If *M* is countable, then its ordertype is exactly N + Z · Q. (Because Q is the unique countable dense linear order without endpoints.)
- In particular, all countable nonstandard models of arithmetic are order-isomorphic.

- First constructed by Thoralf Skolem in the 1920s. (Skolem used an ultrapower construction.)
- There are many different nonisomorphic models of arithmetic of any infinite cardinality. In particular, there are 2^{ℵ0} isomorphism classes for countable models of arithmetic.
- If *M* is countable, then its ordertype is exactly N + Z · Q. (Because Q is the unique countable dense linear order without endpoints.)
- In particular, all countable nonstandard models of arithmetic are order-isomorphic.
- Open Question (Harvey Friedman): ℕ has the property that if a model of arithmetic is order-isomorphic to it then they are fully isomorphic. Does any other model of arithmetic have this property?

- First constructed by Thoralf Skolem in the 1920s. (Skolem used an ultrapower construction.)
- There are many different nonisomorphic models of arithmetic of any infinite cardinality. In particular, there are 2^{ℵ0} isomorphism classes for countable models of arithmetic.
- If *M* is countable, then its ordertype is exactly N + Z · Q. (Because Q is the unique countable dense linear order without endpoints.)
- In particular, all countable nonstandard models of arithmetic are order-isomorphic.
- Open Question (Harvey Friedman): ℕ has the property that if a model of arithmetic is order-isomorphic to it then they are fully isomorphic. Does any other model of arithmetic have this property?
- (Stanley Tennenbaum) If M is nonstandard then neither the + nor \times of M is a computable function.

• Consider *p* the TM which enumerates the theorems of arithmetic.

< 口 > < 同

• Consider *p* the TM which enumerates the theorems of arithmetic.

< 口 > < 同

• Consider *p* the TM which enumerates the theorems of arithmetic.

nac

$$\begin{array}{c} & & & \\ & & & \\ \hline & & & \\ & & & \\$$

- Consider *p* the TM which enumerates the theorems of arithmetic.
- s is a computation log witnessing that p outputs $\lceil 2 + 2 = 4 \rceil$.

(s is a number coding the sequence of computation steps. Checking that s has this property only requires looking in N.)

Image: A mathematical states and the states of the states and the states of the sta

$$\xrightarrow{p \quad s \quad N} M$$

- Consider *p* the TM which enumerates the theorems of arithmetic.
- s is a computation log witnessing that p outputs $\lceil 2 + 2 = 4 \rceil$.

(s is a number coding the sequence of computation steps. Checking that s has this property only requires looking in N.)

• If we run p in \mathbb{N} , then we never output $\lceil 0 = 1 \rceil$.

Image: A math a math

$$\xrightarrow{p \quad s \quad p \quad s \quad N} M$$

- Consider p the TM which enumerates the theorems of arithmetic.
- s is a computation log witnessing that p outputs $\lceil 2 + 2 = 4 \rceil$.

(s is a number coding the sequence of computation steps. Checking that s has this property only requires looking in \mathbb{N} .)

- If we run p in \mathbb{N} , then we never output $\lceil 0 = 1 \rceil$.
- But what if we run p in nonstandard M which thinks arithmetic is inconsistent?

$$\xrightarrow{p \quad s} \mathbb{N} \qquad t \qquad M$$

$$[0 = 1] \quad [2 + 2 = 4] \qquad \mathbb{N} \qquad t \qquad \mathbb{N} \qquad t \qquad \mathbb{N} \qquad \mathbb{N}$$

- Consider p the TM which enumerates the theorems of arithmetic.
- s is a computation log witnessing that p outputs $\lceil 2 + 2 = 4 \rceil$.

(s is a number coding the sequence of computation steps. Checking that s has this property only requires looking in \mathbb{N} .)

- If we run p in \mathbb{N} , then we never output $\lceil 0 = 1 \rceil$.
- But what if we run p in nonstandard M which thinks arithmetic is inconsistent?
- Then there is a computation log t witnessing that p outputs $\neg 0 = 1 \neg$. But t must be nonstandard!

$$\xrightarrow{p \quad s} \mathbb{N} \qquad t \qquad M$$

$$[0 = 1] \quad [2 + 2 = 4] \qquad \mathbb{N} \qquad t \qquad \mathbb{N} \qquad t \qquad \mathbb{N} \qquad \mathbb{N}$$

- Consider p the TM which enumerates the theorems of arithmetic.
- s is a computation log witnessing that p outputs $\lceil 2 + 2 = 4 \rceil$.

(s is a number coding the sequence of computation steps. Checking that s has this property only requires looking in \mathbb{N} .)

- If we run p in \mathbb{N} , then we never output $\lceil 0 = 1 \rceil$.
- But what if we run p in nonstandard M which thinks arithmetic is inconsistent?
- Then there is a computation log t witnessing that p outputs $\neg 0 = 1 \neg$. But t must be nonstandard!
- The point: By moving to a larger world we made p output more numbers.

In summary:

- The statement "the TM p outputs n for some input" is upward absolute—if it's true it stays true if we end-extend to a larger model.
 Logicians call this a Σ₁ statement. (By the MRDP theorem, these are the statements equivalent to one whose only quantifiers are a block of ∃s.)
- But the statement "the TM p does not output n for some input" is not upward absolute. It is downward absolute though.

Logicians call this a Π_1 statement.

In summary:

The statement "the TM p outputs n for some input" is upward absolute—if it's true it stays true if we end-extend to a larger model.
 Logicians call this a Σ₁ statement. (By the MRDP theorem, these are the statements equivalent to one whose only quantifiers

are a block of $\exists s.$)

Peano arithmetic proves every true (i.e. in \mathbb{N}) statement of this form.

• But the statement "the TM p does not output n for some input" is not upward absolute. It is downward absolute though.

Logicians call this a Π_1 statement.

Both the first and second incompleteness theorems are about statements of this form.

We've seen that the behavior of a Turing machine can be undecidable.

- Proof theoretic: It may be independent of PA how *p* behaves.
- Model theoretic: Running *p* in different nonstandard models of arithmetic may produce different behavior.

I want to talk about a striking case of the undecidability of how Turing machines behave, due to W. Hugh Woodin, where p can output anything at all if run in the right universe!

DISTINGUISHED LECTURE SERIES

Theorem (Woodin)

There is a Turing machine p with the following properties.

- p provably enumerates a finite sequence.
- **2** Running p inside \mathbb{N} never produces any output, i.e. it enumerates the empty sequence.
- But, for any finite sequence s of natural numbers there is a nonstandard model of arithmetic M so that running p in M enumerates exactly s.

The Turing machine *p*:

- *p* searches through the proofs of Peano arithmetic, looking at the theorems they prove.
- *p* is looking for a theorem of the form "*p* does **not** enumerate the sequence *s*", for *s* some nonempty finite sequence of numbers.

(p can refer to itself by the Kleene recursion theorem.)

• If p ever sees this, then p outputs the sequence s.

The Turing machine *p*:

- *p* searches through the proofs of Peano arithmetic, looking at the theorems they prove.
- *p* is looking for a theorem of the form "*p* does **not** enumerate the sequence *s*", for *s* some nonempty finite sequence of numbers.

(p can refer to itself by the Kleene recursion theorem.)

• If p ever sees this, then p outputs the sequence s.

Claim: Run in \mathbb{N} , *p* outputs the empty sequence.

Otherwise p outputs some s. So Peano arithmetic proves this true Σ_1 statement. But by the definition of p, this also means that Peano arithmetic proves that p does not output s. This would mean that Peano arithmetic is inconsistent. But it's not.

- *p* searches through the proofs of Peano arithmetic, looking for a theorem of the form "*p* does **not** enumerate the sequence *s*", for *s* some nonempty sequence of numbers.
- If p ever sees this, then p outputs the sequence s.

Fix a finite sequence of natural numbers s. We want to find a nonstandard model of arithmetic M in which running p outputs s.

- *p* searches through the proofs of Peano arithmetic, looking for a theorem of the form "*p* does **not** enumerate the sequence *s*", for *s* some nonempty sequence of numbers.
- If p ever sees this, then p outputs the sequence s.

Fix a finite sequence of natural numbers s. We want to find a nonstandard model of arithmetic M in which running p outputs s.

Claim: Peano arithmetic + "p outputs s" is consistent.

- *p* searches through the proofs of Peano arithmetic, looking for a theorem of the form "*p* does **not** enumerate the sequence *s*", for *s* some nonempty sequence of numbers.
- If p ever sees this, then p outputs the sequence s.

Fix a finite sequence of natural numbers s. We want to find a nonstandard model of arithmetic M in which running p outputs s.

Claim: Peano arithmetic + "p outputs s" is consistent.

Otherwise "p does not output s" is a theorem of Peano arithmetic. But then running p in \mathbb{N} would output a nonempty sequence. We just saw that is not the case.

- *p* searches through the proofs of Peano arithmetic, looking for a theorem of the form "*p* does **not** enumerate the sequence *s*", for *s* some nonempty sequence of numbers.
- If p ever sees this, then p outputs the sequence s.

Fix a finite sequence of natural numbers s. We want to find a nonstandard model of arithmetic M in which running p outputs s.

Claim: Peano arithmetic + "p outputs s" is consistent.

Otherwise "p does not output s" is a theorem of Peano arithmetic. But then running p in \mathbb{N} would output a nonempty sequence. We just saw that is not the case.

So by the completeness theorem there is a model of arithmetic in which p outputs s.

Woodin's universal algorithm, general form

Theorem (Woodin)

There is a Turing machine p with the following properties.

- p provably enumerates a finite sequence.
- ② Running p inside N never produces any output, i.e. it enumerates the empty sequence.
- Suppose M a model of arithmetic in which p enumerates s and that s* is a sequence in M which extends s. Then we can end-extend M to a larger model of arithmetic M* in which p enumerates s*.

Theorem (Woodin)

There is a Turing machine p with the following properties.

- **1** *p* provably enumerates a finite sequence.
- ② Running p inside N never produces any output, i.e. it enumerates the empty sequence.
- Suppose M a model of arithmetic in which p enumerates s and that s* is a sequence in M which extends s. Then we can end-extend M to a larger model of arithmetic M* in which p enumerates s*.

Proof idea: Do a similar argument, but internally to M. Need some more technical lemmata to check that the argument can be arithmetized.

(2023 Feb 6) 22 / 31

A connection to philosophy: arithmetic potentialism

- Imagine climbing through the tree of nonstandard models of arithmetic, continually end-extending.
- This potentialist system gives a nonstandard twist on Aristotle's notion of the potential infinite.
- There is a natural interpretation in modal logic—extend ordinary logic by adding two new operators
 - $\Box \varphi$ means φ is necessarily true—true in all extensions.
 - $\Diamond \varphi$ means φ is possibly true—true in some extension.
- (Hamkins) Can use Woodin's universal algorithm to calculate which modal assertions are valid (true in any world under any substitution of variables).

Namely, those in the modal theory S4.

• The model theory of arithmetic is about understanding the universe of finite mathematical objects.

< 口 > < 同

- The model theory of arithmetic is about understanding the universe of finite mathematical objects.
- If we want to understand the universe of infinitary mathematical objects, then that's the model theory of set theory.

Where my research fits into this project

- The model theory of arithmetic is about understanding the universe of finite mathematical objects.
- If we want to understand the universe of infinitary mathematical objects, then that's the model theory of set theory.
- My specialization is in set theory, the branch of mathematics whose major themes are the higher infinite, well-foundedness, and transfinite constructions.
- Some of my research is in pure set theory, e.g. in aspects of Cohen's method of forcing and set-theoretic geology.
- The model theory of sets has been a recurring topic, from my dissertation work* to my most recent pre-print[†].

* (Kameryn J. Williams, "Minimum models of second-order set theories", The Journal of Symbolic Logic (2019).)

(Alfredo Roque Freire & Kameryn J. Williams, "Non-tightness in class theory and second-order arithmetic", under review.)

Where my research fits into this project

- The model theory of arithmetic is about understanding the universe of finite mathematical objects.
- If we want to understand the universe of infinitary mathematical objects, then that's the model theory of set theory.

Is there a version of Woodin's universal algorithm for the world of infinitary mathematics?

- My specialization is in set theory, the branch of mathematics whose major themes are the higher infinite, well-foundedness, and transfinite constructions.
- Some of my research is in pure set theory, e.g. in aspects of Cohen's method of forcing and set-theoretic geology.
- The model theory of sets has been a recurring topic, from my dissertation work* to my most recent pre-print[†].

* (Kameryn J. Williams, "Minimum models of second-order set theories", The Journal of Symbolic Logic (2019).)

. (Alfredo Roque Freire & Kameryn J. Williams, "Non-tightness in class theory and second-order arithmetic", under review.)

Theorem (Hamkins–W.)

There is a Σ_1 definition for a finite sequence s so that:

- ZF, the basic axioms of set theory, proves s is a finite sequence.
- If M is a well-founded model of ZF then its s is the empty sequence.
- If M is a countable model of ZF with s as its sequence and s^{*} is any finite sequence in M extending s then there is a end-extension M^{*} ⊨ ZF of M whose sequence is s^{*}.

(Joel David Hamkins & Kameryn J. Williams, "The Σ_1 -definable universal finite sequence, The Journal of Symbolic Logic (2021).)

(2023 Feb 6) 25 / 31

Theorem (Hamkins–W.)

There is a Σ_1 definition for a finite sequence s so that:

- **1** ZF, the basic axioms of set theory, proves *s* is a finite sequence.
- If M is a well-founded model of ZF then its s is the empty sequence.
- If M is a countable model of ZF with s as its sequence and s^{*} is any finite sequence in M extending s then there is a end-extension M^{*} ⊨ ZF of M whose sequence is s^{*}.

At core this is a similar sort of diagonal argument, but in a more difficult setting and needing more technology.

(Joel David Hamkins & Kameryn J. Williams, "The Σ_1 -definable universal finite sequence, The Journal of Symbolic Logic (2021).)

Like how Woodin's universal algorithm enables an analysis of arithmetic potentialism, the universal finite sequence enables an analysis of set-theoretic potentialism.

 $\begin{array}{ll} \Diamond \varphi & \text{is true at } M \text{ if } \varphi \text{ is true at some extension of } M \\ \Box \varphi & \text{is true at } M \text{ if } \varphi \text{ is true at every extension of } M \end{array}$

Like how Woodin's universal algorithm enables an analysis of arithmetic potentialism, the universal finite sequence enables an analysis of set-theoretic potentialism.

 $\begin{array}{ll} \Diamond \varphi & \text{is true at } M \text{ if } \varphi \text{ is true at some extension of } M \\ \Box \varphi & \text{is true at } M \text{ if } \varphi \text{ is true at every extension of } M \end{array}$

Corollary (Hamkins-W.)

The modal logic of end-extensional set-theoretic potentialism is exactly S4.

Class-theoretic potentialism

In another project,* a coauthor and I investigate potentialism in the context of class theory.

* (Neil Barton & Kameryn J. Williams, "Varieties of class-theoretic potentialism", *under review*.)

K. Williams (SHSU)

The universal algorithm & potentialism

(2023 Feb 6) 27 / 31

In another project,* a coauthor and I investigate potentialism in the context of class theory.

• Some collections, such as the collection V of all sets, are too big to be sets subject to the usual rules.

(Neil Barton & Kameryn J. Williams, "Varieties of class-theoretic potentialism", under review.)
In another project,* a coauthor and I investigate potentialism in the context of class theory.

- Some collections, such as the collection V of all sets, are too big to be sets subject to the usual rules.
- But you can avoid paradox if you disallow these too big collections—proper classes—from being elements of other collections.
- The first formal treatment was given by von Neumann, and the topic has seen renewed interest in the past decade.

(Neil Barton & Kameryn J. Williams, "Varieties of class-theoretic potentialism", under review.)

In another project,* a coauthor and I investigate potentialism in the context of class theory.

- Some collections, such as the collection V of all sets, are too big to be sets subject to the usual rules.
- But you can avoid paradox if you disallow these too big collections—proper classes—from being elements of other collections.
- The first formal treatment was given by von Neumann, and the topic has seen renewed interest in the past decade.

• This is an interdisciplinary project: we're concerned with both mathematical results about these systems and how they inform philosophical debates within the philosophy of mathematics.

(Neil Barton & Kameryn J. Williams, "Varieties of class-theoretic potentialism", under review.)

Modal model theory, and student research

- Most of the extant work in potentialism has been on topics within logic.
- But this is a general framework.
- Suppose you have a class of mathematical structures, ordered by a substructure relation. (For example: groups, graphs, semirings.) Then there is an interpretation of modal logic in this context:

 $\begin{array}{ll} \Diamond \varphi & \text{is true at } M \text{ if } \varphi \text{ is true at some extension of } M \\ \Box \varphi & \text{is true at } M \text{ if } \varphi \text{ is true at every extension of } M \end{array}$

Modal model theory, and student research

- Most of the extant work in potentialism has been on topics within logic.
- But this is a general framework.
- Suppose you have a class of mathematical structures, ordered by a substructure relation. (For example: groups, graphs, semirings.) Then there is an interpretation of modal logic in this context:

 $\begin{array}{ll} \Diamond \varphi & \text{is true at } M \text{ if } \varphi \text{ is true at some extension of } M \\ \Box \varphi & \text{is true at } M \text{ if } \varphi \text{ is true at every extension of } M \end{array}$

- Hamkins and Wołoszyn (2020) looked a bit at the general theory and the specific case of graphs, but the area is wide open and little is known.
- This is a good topic for student research: it's approachable with little background in model theory.

Modal model theory, and student research

- Most of the extant work in potentialism has been on topics within logic.
- But this is a general framework.
- Suppose you have a class of mathematical structures, ordered by a substructure relation. (For example: groups, graphs, semirings.) Then there is an interpretation of modal logic in this context:

 $\begin{array}{ll} \Diamond \varphi & \text{is true at } M \text{ if } \varphi \text{ is true at some extension of } M \\ \Box \varphi & \text{is true at } M \text{ if } \varphi \text{ is true at every extension of } M \end{array}$

- Hamkins and Wołoszyn (2020) looked a bit at the general theory and the specific case of graphs, but the area is wide open and little is known.
- This is a good topic for student research: it's approachable with little background in model theory.
- Last semester, I mentored an undergrad on a topic in this area, studying the modal model theory of special classes of graphs (triangle-free, etc.).

Applications of logic: nonstandard methods

- An application of model theory from Abraham Robinson (1960s).
- The idea: embed a mathematical structure *M* in a saturated elementary extension **M*. Facts about *M* carry upward to **M*, and the transfer principle lets you go in the other direction.
- Robinson looked at $\mathbb{R} \hookrightarrow {}^*\mathbb{R},$ in nonstandard analysis.

Applications of logic: nonstandard methods

- An application of model theory from Abraham Robinson (1960s).
- The idea: embed a mathematical structure *M* in a saturated elementary extension **M*. Facts about *M* carry upward to **M*, and the transfer principle lets you go in the other direction.
- Robinson looked at $\mathbb{R} \hookrightarrow {}^*\mathbb{R},$ in nonstandard analysis.
- Since the 1980s, N → *N has been fruitfully used to study the combinatorics of N.
 - (E.g. you can prove Ramsey's theorem by a nonstandard argument.)

Applications of logic: nonstandard methods

- An application of model theory from Abraham Robinson (1960s).
- The idea: embed a mathematical structure *M* in a saturated elementary extension **M*. Facts about *M* carry upward to **M*, and the transfer principle lets you go in the other direction.
- Robinson looked at $\mathbb{R} \hookrightarrow {}^*\!\mathbb{R},$ in nonstandard analysis.
- Since the 1980s, N → *N has been fruitfully used to study the combinatorics of N.
 - (E.g. you can prove Ramsey's theorem by a nonstandard argument.)

- In an ongoing project with Tim Trujillo we've been looking using nonstandard methods in topological Ramsey theory.
- We have a nonstandard proof of the classical Nash-Williams partition theorem, and extensions of it to a more general setting.

(2023 Feb 6) 29 / 31

- Closely related to nonstandard methods are ultrafilters.
- Originally studied by Ulam in the context of measure theory, ultrafilters were taken up by logicians and became a central object in both set theory and model theory.

- Closely related to nonstandard methods are ultrafilters.
- Originally studied by Ulam in the context of measure theory, ultrafilters were taken up by logicians and became a central object in both set theory and model theory.
- Arguments using the ultrapower M → *M can be reformulated directly to use ultrafilters.
- And ultrafilters enjoy other application, e.g. the Galvin–Glazer proof of Hindman's theorem using idempotent ultrafilters.

- Closely related to nonstandard methods are ultrafilters.
- Originally studied by Ulam in the context of measure theory, ultrafilters were taken up by logicians and became a central object in both set theory and model theory.
- Arguments using the ultrapower M → *M can be reformulated directly to use ultrafilters.
- And ultrafilters enjoy other application, e.g. the Galvin–Glazer proof of Hindman's theorem using idempotent ultrafilters.

• With Trujillo, we also have an ultrafilter version of our proof of the Nash-Williams theorem.

- Closely related to nonstandard methods are ultrafilters.
- Originally studied by Ulam in the context of measure theory, ultrafilters were taken up by logicians and became a central object in both set theory and model theory.
- Arguments using the ultrapower M → *M can be reformulated directly to use ultrafilters.
- And ultrafilters enjoy other application, e.g. the Galvin–Glazer proof of Hindman's theorem using idempotent ultrafilters.

- With Trujillo, we also have an ultrafilter version of our proof of the Nash-Williams theorem.
- Future work: More applications of nonstandard methods and ultrafilters to other areas of mathematics.

- Closely related to nonstandard methods are ultrafilters.
- Originally studied by Ulam in the context of measure theory, ultrafilters were taken up by logicians and became a central object in both set theory and model theory.
- Arguments using the ultrapower M → *M can be reformulated directly to use ultrafilters.
- And ultrafilters enjoy other application, e.g. the Galvin–Glazer proof of Hindman's theorem using idempotent ultrafilters.

- With Trujillo, we also have an ultrafilter version of our proof of the Nash-Williams theorem.
- Future work: More applications of nonstandard methods and ultrafilters to other areas of mathematics.
- Future work: More generally, I'm interesting in building connections between logic and other areas of mathematics.

(2023 Feb 6) 30 / 31

Thank you!

K. Williams (SHSU)

The universal algorithm & potentialism

(2023 Feb 6) 31 / 31

3

Sac

イロト イポト イヨト イヨト