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As befitting an important foundational theory, PA enjoys some nice
properties.
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PA has some nice properties

As befitting an important foundational theory, PA enjoys some nice
properties.

@ PA isn't finitely axiomatizable;

@ For each formula ¢(x), PA proves ¢(x) admits a definable Skolem
function;

@ (Mostowski) For each finite T C PA, PA proves Con(T);
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PA has some nice properties

As befitting an important foundational theory, PA enjoys some nice
properties.

@ PA isn't finitely axiomatizable;

@ For each formula ¢(x), PA proves ¢(x) admits a definable Skolem
function;

@ (Mostowski) For each finite T C PA, PA proves Con(T);

o (Visser) If Tg, Ty are extensions of PA, then Ty and T; are
bi-interpretable iff they have the same deductive closure.
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A theory T is tight if any two deductively
complete extensions of T in the same language
are bi-interpretable iff they are identical.

T is semantically tight if any two
bi-interpretable models of T are isomorphic.
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A theory T is tight if any two deductively
complete extensions of T in the same language
are bi-interpretable iff they are identical.

T is semantically tight if any two
bi-interpretable models of T are isomorphic.
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(Without the same language restriction this is trivial. Consider e.g. PA

+ “the new unary predicate is the evens” versus PA + “the new unary
predicate is the odds".)
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Tightness

Definition

A theory T is tight if any two deductively
complete extensions of T in the same language
are bi-interpretable iff they are identical.

T is semantically tight if any two
bi-interpretable models of T are isomorphic.

(Without the same language restriction this is trivial. Consider e.g. PA
+ “the new unary predicate is the evens” versus PA + “the new unary

predicate is the odds”.)

The following theories are both tight and
semantically tight:.

PA (Visser)
ZF (Enayat)
Z, (Enayat)
KM (Enayat)
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Tightness

Definition

A theory T is tight if any two deductively
complete extensions of T in the same language
are bi-interpretable iff they are identical.

T is semantically tight if any two
bi-interpretable models of T are isomorphic.

The following theories are both tight and
semantically tight:.

e PA (Visser)
e ZF (Enayat)
e Z; (Enayat)
e KM (Enayat)

(Without the same language restriction this is trivial. Consider e.g. PA
+ “the new unary predicate is the evens” versus PA + “the new unary

predicate is the odds”.)

For example, ZF + CH and ZF + —CH are
mutually interpretable. (ZF + CH can be
interpreted as L, and ZF 4+ —~CH can be
interpreted through the boolean
ultrapower approach to forcing.) But
these interpretations lose information, and
there is no way to produce a
bi-interpretation.
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Each of these tight theories have a natural hierarchy of
increasingly stronger fragments.

Lo CIZ; C--- CIE,C--- CPA
ACAG CTM{-CAgC --- CM-CAG C - C 7

Do we need the full strength of the theory to get tightness? Or
are these fragments also tight?

DA™
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The main question

Each of these tight theories have a natural hierarchy of
increasingly stronger fragments.

2o C I C---ClC--- CPA

ACAq CM{-CAg C -+  CMi-CAg C -+ C 75

Do we need the full strength of the theory to get tightness? Or
are these fragments also tight?

We addressed this question for Z and KM.
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Theorem (Freire-w.)
The following theories are not tight.
o ACA;
° I'Ii-CA, for k > 1;
e GB:;

o GB + Zi—Comprehension, for k > 1.
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The following theories are not tight.
o ACA;
° I'Ii-CA, for k > 1;
e GB:;
o GB + Zi—Comprehension, for k > 1.

The constructions for arithmetic versus set theory are very similar.
| will talk about the arithmetic case, since this is MOPA.



A warm-up: ACA is not semantically tight

To prove this, it suffices to demonstrate two models of ACA
which satisfy different theories but are bi-interpretable.

We will show that the minimum w-model of ACA is
bi-interpretable with a carefully chosen extension by Cohen
forcing.

Since these two models satisfy a different theory, we will get the
desired failure.
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|dentifying the minimum w-model of ACA

@ A model of second-order arithmetic is of
the form (M, X) where M are the
numbers of the model and X C P(M) are

the sets.

. @ ACA is axiomatized by:
o If M = w then we call it an w-model. . .
e the axioms of discretely ordered

semirings;

e induction in the full language, i.e. not
just for arithmetical formulae; and

e arithmetical comprehension.
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|dentifying the minimum w-model of ACA

@ A model of second-order arithmetic is of
the form (M, X) where M are the
numbers of the model and X C P(M) are

the sets.

. @ ACA is axiomatized by:
o If M = w then we call it an w-model.

e the axioms of discretely ordered
@ Any w-model automatically satisfies full semirings;
induction. e induction in the full language, i.e. not
just for arithmetical formulae; and
e arithmetical comprehension.
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|dentifying the minimum w-model of ACA

@ A model of second-order arithmetic is of
the form (M, X) where M are the
numbers of the model and X C P(M) are

the sets. . .
@ ACA is axiomatized by:

e the axioms of discretely ordered
@ Any w-model automatically satisfies full semirings;
induction. e induction in the full language, i.e. not
just for arithmetical formulae; and
e arithmetical comprehension.

o If M = w then we call it an w-model.

@ It's easy to see that the minimum
w-model of ACA is (w, Def(w)), the finite
ordinals equipped with their arithmetically
definable subsets.

| will write D for Def(w).
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Let T denote the Tarskian satisfaction class for
w. By the undefinability of truth, T ¢ D.
Nevertheless, T is definable over (w, D).
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|dentifying the minimum w-model of ACA

Let T denote the Tarskian satisfaction class for
w. By the undefinability of truth, T & D.
Nevertheless, T is definable over (w, D).

@ For each k € w, the restriction T of T to
>, formulae is in D.

@ So we can define that ¢[a] is in T iff there
exists k so that there exists a set
satisfying the definition of T which
judges ¢[a] to be true.

o (The T are not uniformly arithmetically definable, but the property of

being a T is uniformly recognizable.)
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|dentifying the minimum w-model of ACA

Let T denote the Tarskian satisfaction class for

w. By the undefinability of truth, T & D.

Nevertheless, T is definable over (w, D).

@ This gives a X} definition of T.

@ There's also M} definition—any set that
looks like a T which has ¢[a] in its
domain judges ¢|[a] to be true.

@ For each k € w, the restriction T of T to
>, formulae is in D.

@ So we can define that ¢[a] is in T iff there
exists k so that there exists a set
satisfying the definition of T which
judges ¢[a] to be true.

@ So this is absolute between w-models of
ACA. They all define T the same.

o (The T are not uniformly arithmetically definable, but the property of

being a T is uniformly recognizable.)
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|dentifying the minimum w-model of ACA, and codes for higher order sets

Because T is definable, so is the property
“XeD":

e X € D iff there is ¢[a, x| so that

X ={x:y[a,x] € T}

So “every set is arithmetically definable” is a
single second-order assertion, and the only
w-model of ACA which satisfies it is the
minimum w-model.
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|dentifying the minimum w-model of ACA, and codes for higher order sets

Because T is definable, so is the property ] ) ]
“X e D D is a set of sets of integers, but it can be

coded by a single set of integers. The elements

e X € D iff there is ¢[a, x| so that of D are the <lices of T.

X ={x:y[a,x] € T}
So “every set is arithmetically definable” is a
single second-order assertion, and the only
w-model of ACA which satisfies it is the
minimum w-model.

Because w has a canonical well-order, we have
a canonical enumeration of the element of D:
order them by the order of their smallest index
inT.
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Relativizing truth and definability

Consider C C w.
e T(C) is the truth predicate with C as a
predicate;
@ D(C) is the sets arithmetically definable
from C.
The facts about T and D generalize to give:
o If X is an w-model of ACA with C € X
then T(C) is definable over X" and so is
the predicate "X € D(C)".
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Relativizing truth and definability

If C & D, then T(C) in general needn’t be

Consider C C w. definable over D. (Quick proof: there are continuum many different
@ T(C) is the truth predicate with C as a C but only countably many definitions.)
predicate;
@ D(C) is the sets arithmetically definable
from C.

The facts about T and D generalize to give:

e If X is an w-model of ACA with C € X
then T(C) is definable over X" and so is
the predicate "X € D(C)".
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Relativizing truth and definability

Consider C C w.
e T(C) is the truth predicate with C as a
predicate;
@ D(C) is the sets arithmetically definable
from C.
The facts about T and D generalize to give:
o If X is an w-model of ACA with C € X

then T(C) is definable over X" and so is
the predicate "X € D(C)".

If C & D, then T(C) in general needn’t be
definable over D (Quick proof: there are continuum many different

C but only countably many definitions.)

But if C is definable over D and generic over
D for Cohen forcing then the truth lemma
implies T(C) is definable over D.

@ An arithmetical formula ¢(C) is true iff
there is p € C such that p I ¢(C).

@ So we can define T(C) over D as:
¢[x, C] € T(C) iff there is p € C which

forces p(x, C).

K. Williams (SHSU) Tightness in second-order arithmetic MOPA (2022 Oct 18) 10 / 31



Recall:
e Cohen forcing P = Add(w, 1) is the
infinite binary tree.
o A filter C C P is generic over D if it
meets every dense subset of P from D.
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Defining a Cohen generic

Recall:

e Cohen forcing P = Add(w, 1) is the
infinite binary tree.

o A filter C C P is generic over D if it
meets every dense subset of P from D.

From T we have a canonical enumeration of

the w many dense subsets. Now follow the

usual proof of the Rasiowa—Sikorski lemma:
e Start with pg = 0);

@ At stage n+ 1, extend p, to the least
condition in the n-th dense set which is
below p,, get p, + 1

@ Then define C = {q: g > p, for some n}.
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Defining a Cohen generic

Recall:

e Cohen forcing P = Add(w, 1) is the
infinite binary tree.

o A filter C C P is generic over D if it
meets every dense subset of P from D.

Because we have a definable enumeration of
the dense sets and we always pick the least
condition, there is a uniform definition of the
pn- So C is definable. Note the definition
quantifies over sets in D.

From T we have a canonical enumeration of
the w many dense subsets. Now follow the
usual proof of the Rasiowa—Sikorski lemma:

e Start with pg = 0);

@ At stage n+ 1, extend p, to the least
condition in the n-th dense set which is
below p,, get p, + 1

@ Then define C = {q: g > p, for some n}.
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Defining a Cohen generic

Recall:
e Cohen forcing P = Add(w, 1) is the
infinite binary tree.
o A filter C C P is generic over D if it
meets every dense subset of P from D.
From T we have a canonical enumeration of
the w many dense subsets. Now follow the
usual proof of the Rasiowa—Sikorski lemma:
e Start with pg = 0);
@ At stage n+ 1, extend p, to the least
condition in the n-th dense set which is
below p,, get p, + 1

@ Then define C = {q: g > p, for some n}.

Because we have a definable enumeration of
the dense sets and we always pick the least
condition, there is a uniform definition of the
pn- So C is definable. Note the definition
quantifies over sets in D.

Because D is uniformly definable over any
w-model of ACA, any w-model of ACA defines
C the same.
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Let U = D(C).
(w,D) and (w,U) are bi-interpretable but satisfy different extensions of
ACA.
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Putting it all together
Let U/ = D(C).

Theorem (Freire-W., independently Enayat)

(w,D) and (w,U) are bi-interpretable but satisfy different extensions of
ACA.

That (w,U) = ACA is because forcing preserves arithmetical
comprehension. And it satisfies “there is a set which is not arithmetically
definable” whereas (w, D) satisfies “every set is arithmetically definable”.

Finally, since you know that T(C) is definable over D it's easy to build the
interpretations. Interpreting D in U is just restricting the domain of the
sets, and for the other direction you can represent sets by their least index

in T(C). And they form a bi-interpretation because the two models agree
on T, C, and T(C).
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To get a failure of tightness, we need a
construction that works uniformly across any
model (of an appropriate theory).
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To get a failure of tightness, we need a
construction that works uniformly across any
model (of an appropriate theory).

It turns out essentially the same construction
works.
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From w-models to non-tightness

To get a failure of tightness, we need a
construction that works uniformly across any
model (of an appropriate theory).
It turns out essentially the same construction
works.
o If (M,X) = ACA, then X has a
> k-satisfaction class for every k € M.

(Because the set of such k is inductive.)
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From w-models to non-tightness

To get a failure of tightness, we need a
construction that works uniformly across any
model (of an appropriate theory).

It turns out essentially the same construction
works.

o If (M,X) = ACA, then X has a

> k-satisfaction class for every k € M.
(Because the set of such k is inductive.)

e Corollary: If (M, X) = ACA then there is
an inductive full satisfaction class over M.
In particular, M |= Con(PA) and if M is
w-nonstandard then it is recursively
saturated.
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From w-models to non-tightness

To get a failure of tightness, we need a
construction that works uniformly across any
model (of an appropriate theory).

It turns out essentially the same construction
works.

o If (M,X) = ACA, then X has a
> k-satisfaction class for every k € M.

(Because the set of such k is inductive.)

e Corollary: If (M, X) = ACA then there is
an inductive full satisfaction class over M.
In particular, M |= Con(PA) and if M is
w-nonstandard then it is recursively
saturated.

K. Williams (SHSU)

Tightness in second-order arithmetic

If M is countable and recursively saturated it
admits continuum many different full

satisfaction classes, so we cannot expect that
all M-models of ACA will define T the same.

But if two M-models have the same

Y ,-satisfaction classes, then they define T the
same. For example, this happens if one is a
forcing extension of the other.
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From w-models to non-tightness

To get a failure of tightness, we need a
construction that works uniformly across any
model (of an appropriate theory).

It turns out essentially the same construction
works.

o If (M,X) = ACA, then X has a
> k-satisfaction class for every k € M.

(Because the set of such k is inductive.)

e Corollary: If (M, X) = ACA then there is
an inductive full satisfaction class over M.
In particular, M |= Con(PA) and if M is
w-nonstandard then it is recursively
saturated.

K. Williams (SHSU)

Tightness in second-order arithmetic

If M is countable and recursively saturated it
admits continuum many different full

satisfaction classes, so we cannot expect that
all M-models of ACA will define T the same.

But if two M-models have the same

Y ,-satisfaction classes, then they define T the
same. For example, this happens if one is a
forcing extension of the other.

Observation: Any model of ACA has a
minimum w-submodel (= submodel that
agrees on w) of ACA.
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@ T is the union of the ¥ ,-satisfaction
classes.
@ D consists of the slices of T.
So there is a second-order axiom
expressing “every set is in D".
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Definability and truth in arbitrary models of ACA

@ T is the union of the ¥ ,-satisfaction
classes.
@ D consists of the slices of T.

So there is a second-order axiom expressing “C
exists and every set is in D(C)".

So there is a second-order axiom
expressing “every set is in D".

@ C is the Cohen generic over D
constructed from the canonical
enumeration of the dense subsets in
D arising from T.

o (Full induction is what guarantees the construction of the p,

continues even for nonstandard n.)
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Definability and truth in arbitrary models of ACA

@ T is the union of the ¥ ,-satisfaction
classes. So there is a second-order axiom expressing “C

exists and every set is in D(C)".
Let D = ACA + “every set is in D" and

U = ACA + "C exists and every set is in
D(C)".

@ D consists of the slices of T.

So there is a second-order axiom
expressing “every set is in D".
@ C is the Cohen generic over D
constructed from the canonical Theorem (Freire-W., independently Enayat)
enumeration of the dense subsets in

- The theories D and U are bi-interpretable.
D arising from T.

Consequently, ACA is not tight.

o (Full induction is what guarantees the construction of the p,

continues even for nonstandard n.)
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From ACA to IM;-CA

Abstractly, the strategy to prove the
non-tightness of ACA was this:

@ There is a minimum model of ACA (the
arithmetically definable sets).

@ There is a second-order axiom to
characterize this minimum model.

@ We can define a canonical Cohen generic
over this minimum model, and thereby get
a definable choice for an extension of the
minimum model.

@ The minimum model and its canonical
extension are bi-interpretable.

@ The construction machinery for the
bi-interpretation works even over
w-nonstandard models.
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From ACA to IM;-CA

Abstractly, the strategy to prove the

non-tightness of ACA was this: @ The minimum model and its canonical
@ There is a minimum model of ACA (the extension are bi-interpretable.
arithmetically definable sets). @ The construction machinery for the
@ There is a second-order axiom to bi-interpretation works even over
characterize this minimum model. w-nonstandard models.

@ We can define a canonical Cohen generic
over this minimum model, and thereby get
a definable choice for an extension of the
minimum model.

To prove the non-tightness of I'Ii—CA we will
adopt the same strategy.
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Second-order arithmetic is set theory in disguise

Strong subsystems of Z, are bi-interpretable

with fragments of ZFC™+ “every set is The set theory — arithmetic direction is
OEE s (= v Py simple—restrict to subsets of w. The
arithmetic — set theory direction is based on
the idea, going back to Aczel and Scott, of
coding sets as trees and constructing an
appropriate membership relation between trees.
A key observation, due to Simpson, is that

1 : : ) . .
o For IMj-CAo, k > 2, restrict Separation to  ATR| suffices to carry out this interpretation.
I'Ii_1 formulae.

@ Z, + the AC schema is bi-interpretable
with ZFC™+ "“every set is countable”.

@ For Z5 alone, drop Collection from the set
theory side.
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Minimum S-models of arithmetic

An w-model of arithmetic is a S-model if it is
correct about which of its relations are
well-founded.

o (Harrison 1968) The hyperarithmetic sets

do not form a B-model.

Any [-model of arithmetic is bi-interpretable
with a transitive model of set theory. (any g-model
automatically satisfies ATR and so is strong enough to carry out the sets as trees

construction.)
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Minimum S-models of arithmetic

An w-model of arithmetic is a S-model if it is
correct about which of its relations are
well-founded.

@ (Harrison 1968) The hyperarithmetic sets
do not form a 8-model.

@ (Set theoretical fact) Levels of Godel's
constructible universe L give minimum
transitive models of set theories.

@ Important point! L has a definable global

well-order, so we can use it to make
Any 6-m0de| Of arithmetic is bi—interpretab|e Canonical Choices_

with a transitive model of set theory. (any s-model This translates over to arithmetic to give

minimum B-models of subsystems of
second-order arithmetic.

automatically satisfies ATR and so is strong enough to carry out the sets as trees

construction.)
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Minimum S-models of arithmetic

The following theories have minimum S-models
arising as the set of reals in a level L, of the
constructible universe.
@ For Mi-CA: the supremum of the first w
many admissible ordinals.
o For I'Ii—CA, k > 2: the least ordinal o so
that L, = My_1-Comprehension.
@ For Z5: the ordinal of ramified analysis
Bo—the least ordinal so that Lg, = ZFC™

Moreover, these minimum [-models are
bi-interpretable with their level of L.
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Minimum S-models of arithmetic

The following theories have minimum S-models
arising as the set of reals in a level L, of the

enEE e i fvaEs. These ordinals increase as the strength of the
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many admissible ordinals.

o For I‘Ii—CA, k > 2: the least ordinal o so
that L, = My_1-Comprehension.

@ For Z5: the ordinal of ramified analysis
Bo—the least ordinal so that Lg, = ZFC™

Moreover, these minimum [-models are
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Minimum S-models of arithmetic

The following theories have minimum S-models
arising as the set of reals in a level L, of the
constructible universe.
@ For Mi-CA: the supremum of the first w
many admissible ordinals.
o For I'Ii—CA, k > 2: the least ordinal o so
that L, = My_1-Comprehension.
@ For Z5: the ordinal of ramified analysis
Bo—the least ordinal so that Lg, = ZFC™

Moreover, these minimum [-models are
bi-interpretable with their level of L.

K. Williams (SHSU)

Tightness in second-order arithmetic

These ordinals increase as the strength of the
theory increases.

In particular, if L, gives the minimum S-model
of ﬂi—CA then L, will not satisfy the full
Replacement schema.

So there is an increasing cofinal map

f W — deﬁnable over La. (Because L, thinks every set

is countable, any failure of Replacement can be ported to have domain w.)
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For the next few slides, fix k > 1 and let
B = P(w) N Ly be the minimum -model of

I'Ii—CA. Fix a definable increasing cofinal map
f:rw—a.
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Getting a code for the minimum (-model

For the next few slides, fix k > 1 and let
B = P(w) N L, be the minimum -model of
M}-CA. Fix a definable increasing cofinal map
f:w—a.
@ For each n, L, sees a bijection w — L¢(p).
Pick the L-least, call it b,.
@ Define Tz C w? to consist of the triples
(n,i,x) so that x € by(i). We can think
of Tz as a subset of w.
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Getting a code for the minimum (-model

For the next few slides, fix k > 1 and let
B = P(w) N L, be the minimum -model of
M}-CA. Fix a definable increasing cofinal map
f:w—a.
@ For each n, L, sees a bijection w — L¢(p).
Pick the L-least, call it b,.
@ Define Tz C w? to consist of the triples
(n,i,x) so that x € by(i). We can think
of Tz as a subset of w.

@ Every element of B is some slice of Tg.
Tp is definable over L, since | just defined it.
Note that | used the global well-order of L to
make choices for the definition.
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Getting a code for the minimum (-model

For the next few slides, fix k > 1 and let
B = P(w) N L, be the minimum -model of
M}-CA. Fix a definable increasing cofinal map

frw—a Claim: Tp is second-order definable over 5.

. Fc_>r each n, Lq sees a.bijection w = L(n)- At root, this is because Tg is definable over
Pick the L-least, call it by. L. While B doesn't have direct access to

o Define Tz C w?® to consist of the triples  every set in Ly it is bi-interpretable with Lq. It
(n,i,x) so that x € b,(i). We can think  has trees coding each set in L, so it can
of T as a subset of w. mimic definitions over L, by quantifying over

@ Every element of B is some slice of Tg.  these trees.

Tp is definable over L, since | just defined it.
Note that | used the global well-order of L to
make choices for the definition.
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Absoluteness of the code Tj

Say that a #-model Y is an outer model of B if
B C Y and Y doesn't have any new ordertypes
for a well-order. More precisely, if [ € )V is a
well-order then ) sees an isomorphism of I to
some [ € B.

@ QOuter models of B are bi-interpretable
with outer models of L,—transitive
models of set theory with the same
ordinals.
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Absoluteness of the code Tj

Say that a B-model ) is an outer model of B if Claim: Tg is uniformly definable across all

B C Y and Y doesn't have any new ordertypes outer models of 5.

for a well-order. More precisely, if [ € )V is a By the absoluteness of L. Relativize the
well-order then ) sees an isomorphism of I to  definition of Tz to L and then all outer models

some " € B. of L, will define it the same.
@ Outer models of B are bi-interpretable In particular, there's a definition of T
with outer models of L,—transitive absolute between B and its Cohen extensions.
mOde|S Of set theory Wlth the Same (Because forcing extensions of a model of KP + Mostowski's collapse lemma
Ordina|S. cannot add new ordinals, Cohen extensions are outer models.)
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Claim: There is a definition for a Cohen
generic C over B which is absolute between
outer models of B.
«40>» «F>» «E» « E>» = o>
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Defining a Cohen extension of BB

Claim: There is a definition for a Cohen
generic C over B which is absolute between
outer models of B.

@ It's the same construction as before.

@ From Tp we can define an enumeration of
the dense sets in B.

e We define a sequence (p,) of stronger and
stronger conditions, at each stage
choosing the least condition which gets in
the next dense set.

e Finally set C = {q: g > p, for some n}.
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Defining a Cohen extension of BB

Claim: There is a definition for a Cohen
generic C over B which is absolute between

oty elels of 8 This definition is absolute between outer

models of B because we have an absolute

o It's th i fore. .
t's the same construction as before definition for Tjp.

@ From Tp we can define an enumeration of

the dense sets in B. @ Using C we can define a code Ty for

B[C]: this works similar to the definition

o We define a sequence () ©F SUBTFRL e of T3, except instead of directly at a level
stronger conditions, at each stage L look f diti C which
hoosing the least condition which gets in f(n) W look for conditions p € ¢ whic

c 2 & force behavior about L, [C].

the next dense set.
e Finally set C = {q: g > p, for some n}.
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Let B[C] denote the Cohen extension by C defined as on the previous slide.
are bi-interpretable.

The w-models (w, B) and (w, B[C]) of M}-CA satisfy different theories but
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Semantic non-tightness of M;-CA

Let B[C] denote the Cohen extension by C defined as on the previous slide.

Theorem (Freire-W.)

The w-models (w, B) and (w, B[C]) of M}-CA satisfy different theories but
are bi-interpretable.

@ BB satisfies “every set is in B”, which is expressible using Ty, whereas
B[C] does not satisfy this axiom.

o L[C] = N}-CA because this is preserved by forcing.

e Interpreting B in B[C] is just restricting the domain of the sets. In the
other direction, you can represent sets by their index in Tg(C).

K. Williams (SHSU) Tightness in second-order arithmetic MOPA (2022 Oct 18) 22 /31



From semantic non-tightness to non-tightness for M;-CA

We follow the ACA strategy, doing the same
construction, but in a formal setting rather
than working over a specific model.

@ Again, we can write down an axiom
expressing “l am the minimum model”.

@ This comes from a (possibly ill-founded!)
level of the constructible universe.

@ A canonical Cohen generic can be defined,
and our two theories will include the
assertions “l am the minimum model” and
“l am the canonical Cohen extension of
the minimum model”.

@ Full induction is essential to ensure
constructions go all the way through.
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We follow the ACA strategy, doing the same
construction, but in a formal setting rather
than working over a specific model.

@ Again, we can write down an axiom

i 2 x Most of this is straightforward, and is just like
expressing “l am the minimum model”.

the ACA case, but there's one sticking point.

To define T, | used that L, didn't satisfy
Replacement, and so there was some definable
cofinal map f : w — «a. That's not good
enough now. We need an explicit construction,
one which works uniformly.

@ This comes from a (possibly ill-founded!)
level of the constructible universe.

@ A canonical Cohen generic can be defined,
and our two theories will include the
assertions “l am the minimum model” and
“l am the canonical Cohen extension of
the minimum model”.

@ Full induction is essential to ensure
constructions go all the way through.
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The minimum B-model of M1-CA consists of
the reals which appear in L cx.
«40>» «F>» «E» « E>» = o>
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The minimum B-model of M1-CA consists of
the reals which appear in L cx.
Axiomatize B;j as:
o Mi-CA;
@ Every set is constructible;

@ There are w many admissible ordinals.
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The minimum B-model of M1-CA consists of

the reals which appear in L cx.
Axiomatize B;j as:

o Mi-CA;

@ Every set is constructible;

@ There are w many admissible ordinals

The only S-model which satisfies Bj is the
minimum S-model of I_I%—CA.
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A warm-up: Mi-CA

The minimum 3-model of M1-CA consists of
the reals which appear in L cx. Among non-3-models there isn’t a minimum
N model of B;. But every model of M}-CA has a

Axiomatize Bj as: _
minimum [-submodel (= submodel which

1_CA-
O s agrees about which relations are well-founded),
@ Every set is constructible; which is a model of B.
@ There are w many admissible ordinals. In particular this happens if (M, B[C]) is an

The only 5-model which satisfies Bj is the extension of (M, B) = By by Cohen forcing.
minimum B-model of Mi-CA.
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A warm-up: Mi-CA

What remains is to define a code Tz which
over M}-CA gives the minimum B-submodel of
Ni-CA.
@ The set of n for which there are at least n
many admissible ordinals is inductive, so
by full induction must contain all n.

@ Define T to consist of triples (n, i, x) so
that x is in the i-th set (according to the
L-least enumeration) of L cx.
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What remains is to define a code Tz which
over M}-CA gives the minimum B-submodel of
Ni-CA.
@ The set of n for which there are at least n
many admissible ordinals is inductive, so
by full induction must contain all n.

@ Define T to consist of triples (n, i, x) so
that x is in the i-th set (according to the
L-least enumeration) of L cx.

Fact: If (M, X) is a S-submodel of (M, )),
then they define Tz the same.
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A warm-up: Mi-CA

What remains is to define a code Tz which
over M}-CA gives the minimum B-submodel of
Ni-CA.
@ The set of n for which there are at least n
many admissible ordinals is inductive, so
by full induction must contain all n.

@ Define T to consist of triples (n, i, x) so
that x is in the i-th set (according to the
L-least enumeration) of L cx.

Fact: If (M, X) is a S-submodel of (M, )),
then they define Tz the same.

Using the code T we can canonically
define a Cohen generic C over the
minimum S-submodel of I'I%—CA, and we
can define a code Tp(C) for the extension

by C (Again, full induction is used to define C.)
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A warm-up: Mi-CA

What remains is to define a code Tz which
over M}-CA gives the minimum B-submodel of
Ni-CA.
@ The set of n for which there are at least n
many admissible ordinals is inductive, so
by full induction must contain all n.

@ Define T to consist of triples (n, i, x) so
that x is in the i-th set (according to the
L-least enumeration) of L cx.

Fact: If (M, X) is a B-submodel of (M,)),
then they define Tz the same.

Using the code T we can canonically
define a Cohen generic C over the
minimum S-submodel of I'I%—CA, and we
can define a code Tp(C) for the extension

by C (Again, full induction is used to define C.)

Let U; be Mi-CA + “every set is a slice of
T5(C)".

Theorem (Freire-W.)

By and Uy are bi-interpretable. Hence,
Ni-CA is not tight.
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@ In studying combinatorics in L, Jensen
needed a fine understanding of how ¥,
elementarity behaves in L. For this he
invented fine structure theory.
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—But first | have to talk about fine structure theory!

@ In studying combinatorics in L, Jensen
needed a fine understanding of how X,
elementarity behaves in L. For this he
invented fine structure theory.

@ ¥, uniformization theorem (Jensen): If «
is a limit ordinal then there is a
> o-definable over L, Skolem function for
> ¢ properties.
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elementarity behaves in L. For this he
invented fine structure theory.

@ ¥, uniformization theorem (Jensen): If «
is a limit ordinal then there is a
> o-definable over L, Skolem function for
> ¢ properties.

@ Using this you can give a fine structural
characterization of the minimum
B-models: The minimum S-model of
I'Ik—CA, k > 2, is the reals in L, where a
is the smallest ordinal whose >, _1
projectum is bigger than w.
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Lemma: Let L, be the first level of L which
satisfies X y-Replacement. Then over L, can be
defined a set T C w? which codes P(w) N L.
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—But first | have to talk about fine structure theory!

Lemma: Let L, be the first level of L which
satisfies X y-Replacement. Then over L, can be
defined a set T C w? which codes P(w) N L.

@ In studying combinatorics in L, Jensen
needed a fine understanding of how X,
elementarity behaves in L. For this he

invented fine structure theory. ) _
@ It is enough to define a sequence

(ap : n < w) cofinal in a. From such a
sequence we can put (n,i,x) € Tp if x is
in the j-th real of L, according to the
L-least enumeration.

@ ¥, uniformization theorem (Jensen): If «
is a limit ordinal then there is a
> o-definable over L, Skolem function for
> ¢ properties.

@ Using this you can give a fine structural
characterization of the minimum
B-models: The minimum S-model of
I'Ik—CA, k > 2, is the reals in L, where a
is the smallest ordinal whose >, _1
projectum is bigger than w.

o Given a, set apy1 to be the least ordinal
so that L, , is closed under the ¥,
Skolem function with inputs from L.

@ This sequence must be cofinal by leastness
of a, as Lsyp, «, satisfies 2 y-Replacement.
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All this can be formalized.

Let ZFC, be the theory axiomatized by

KP + X ,-Replacement + [1,-Separation +
[1,-Foundation.
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All this can be formalized.

Let ZFC, be the theory axiomatized by
KP + X ,-Replacement + [1,-Separation +
[1,-Foundation.

e Formal X, uniformization: The theory

ZFC, +V =L proves the existence of a
% ¢ Skolem function.
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Arithmetization

All this can be formalized.

Let ZFC, be the theory axiomatized by Axiomatize the theory By, k > 2 by
KP + > ,-Replacement + [1,-Separation + o ML-CA.
Kk~ )

,-Foundation. ) )
@ Every set is constructible;

e Formal ¥, uniformization: The theory ] )
e There is no ordinal ¢ so that L¢ = Mi-CA.

ZFC, +V = L proves the existence of a
> s Skolem function.
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Arithmetization

All this can be formalized.
Let ZFC, be the theory axiomatized by
KP + ¥ /-Replacement + [,-Separation +
IM1,-Foundation.
e Formal X, uniformization: The theory
ZFC, +V = L proves the existence of a
> s Skolem function.

K. Williams (SHSU)

Tightness in second-order arithmetic

Axiomatize the theory By, k > 2 by
° I'Ii-CA;
@ Every set is constructible;
e There is no ordinal ¢ so that L¢ = Mi-CA.

Fact: (“probably well-known” —Simpson):
Because we include the statement that every
set is constructible, we get for free the Zk—AC
schema.

Fact: The set theory bi-interpretable with By
contains ZFC, _; +V =L + “every set is
countable”.
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e Formal X, uniformization: The theory
ZFC, +V = L proves the existence of a
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but work in Bx. We use full induction to
know the sequence goes all the way
through the model's w.
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Arithmetization

All this can be formalized.

Let ZFC, be the theory axiomatized by
KP + ¥ /-Replacement + [,-Separation +
IM1,-Foundation.

e Formal X, uniformization: The theory
ZFC, +V = L proves the existence of a
> s Skolem function.

@ Formal definition of Tz: Same as before,
but work in Bx. We use full induction to
know the sequence goes all the way
through the model's w.

@ Relativizing the definition to L we get a
definition that's uniform between a model
of By and its forcing extensions.
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Now that we have a definition for a code
Tp for the “minimum model” of By, we
can do the same construction.
«40>» «F>» «E» « E>» = o>
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Non-tightness of M}-CA

Now that we have a definition for a code
Tp for the “minimum model” of By, we
can do the same construction.

@ Define a canonical Cohen generic C
over the minimum model.

@ Then Tg(C), a code for the
extension by C, is definable over the
minimum model.

o All this is absolute between any
model of By and its forcing
extensions.
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Non-tightness of M}-CA

Now that we have a definition for a code
Tp for the “minimum model” of By, we

can do the same construction. . . ) ]
Let Uy be M;-CA + “every set is a slice of

@ Define a ca_nF)nicaI Cohen generic C T5(C)".
over the minimum model.

@ Then Tg(C), a code for the Theorem (Freire-W.)
extension by C, is definable over the By and Uy are bi-interpretable. Hence, I'Ii—C/-\
minimum model. is not tight.

o All this is absolute between any
model of By and its forcing
extensions.
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Alfredo and | were originally interested in the case of class theory, and only
realized our constructions could be ported to arithmetic after the fact.

The theories GB and GB + M}-CA are not tight.
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Alfredo and | were originally interested in the case of class theory, and only

realized our constructions could be ported to arithmetic after the fact.

The theories GB and GB + M}-CA are not tight.

Independently to us, Ali Enayat has been working on closely related
questions.

No finitely axiomatized subtheory of PA, ZF, Z,, or KM s tight. '
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Thank you!
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