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0 Introduction
A crash course in geology

1 The Good: Positive Results

2 The Bad: Negative Results
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Geology 101

Question (Reitz): What if forcing, but
backward?

An inner model W ⊆ V is a ground if
V = W [G ] for some G ∈ V generic over
W for a poset P ∈W .

Two foundational theorems:

(Laver, Woodin) The grounds are
uniformly Π2 definable.

(Usuba) The grounds are downward
set-directed: Given a set-indexed
collection Wi of grounds there is a ground
W with W ⊆Wi for each i .

Geology can be done in ZFC.

All worlds in the generic multiverse are at
most two steps away: M is a forcing
extension of a ground of N.

K Williams (SHSU) Inner Mantles (2022 June 15) 3 / 38



Geology 101

Question (Reitz): What if forcing, but
backward?

An inner model W ⊆ V is a ground if
V = W [G ] for some G ∈ V generic over
W for a poset P ∈W .

Two foundational theorems:

(Laver, Woodin) The grounds are
uniformly Π2 definable.

(Usuba) The grounds are downward
set-directed: Given a set-indexed
collection Wi of grounds there is a ground
W with W ⊆Wi for each i .

Geology can be done in ZFC.

All worlds in the generic multiverse are at
most two steps away: M is a forcing
extension of a ground of N.

K Williams (SHSU) Inner Mantles (2022 June 15) 3 / 38



Geology 101

Question (Reitz): What if forcing, but
backward?

An inner model W ⊆ V is a ground if
V = W [G ] for some G ∈ V generic over
W for a poset P ∈W .

Two foundational theorems:

(Laver, Woodin) The grounds are
uniformly Π2 definable.

(Usuba) The grounds are downward
set-directed: Given a set-indexed
collection Wi of grounds there is a ground
W with W ⊆Wi for each i .

Geology can be done in ZFC.

All worlds in the generic multiverse are at
most two steps away: M is a forcing
extension of a ground of N.

K Williams (SHSU) Inner Mantles (2022 June 15) 3 / 38



Geology 101

Question (Reitz): What if forcing, but
backward?

An inner model W ⊆ V is a ground if
V = W [G ] for some G ∈ V generic over
W for a poset P ∈W .

Two foundational theorems:

(Laver, Woodin) The grounds are
uniformly Π2 definable.

(Usuba) The grounds are downward
set-directed: Given a set-indexed
collection Wi of grounds there is a ground
W with W ⊆Wi for each i .

Geology can be done in ZFC.

All worlds in the generic multiverse are at
most two steps away: M is a forcing
extension of a ground of N.

K Williams (SHSU) Inner Mantles (2022 June 15) 3 / 38



Geology 101

Question (Reitz): What if forcing, but
backward?

An inner model W ⊆ V is a ground if
V = W [G ] for some G ∈ V generic over
W for a poset P ∈W .

Two foundational theorems:

(Laver, Woodin) The grounds are
uniformly Π2 definable.

(Usuba) The grounds are downward
set-directed: Given a set-indexed
collection Wi of grounds there is a ground
W with W ⊆Wi for each i .

Geology can be done in ZFC.

All worlds in the generic multiverse are at
most two steps away: M is a forcing
extension of a ground of N.

K Williams (SHSU) Inner Mantles (2022 June 15) 3 / 38



Geology 101

Question (Reitz): What if forcing, but
backward?

An inner model W ⊆ V is a ground if
V = W [G ] for some G ∈ V generic over
W for a poset P ∈W .

Two foundational theorems:

(Laver, Woodin) The grounds are
uniformly Π2 definable.

(Usuba) The grounds are downward
set-directed: Given a set-indexed
collection Wi of grounds there is a ground
W with W ⊆Wi for each i .

Geology can be done in ZFC.

All worlds in the generic multiverse are at
most two steps away: M is a forcing
extension of a ground of N.

K Williams (SHSU) Inner Mantles (2022 June 15) 3 / 38



Geology 101

Question (Reitz): What if forcing, but
backward?

An inner model W ⊆ V is a ground if
V = W [G ] for some G ∈ V generic over
W for a poset P ∈W .

Two foundational theorems:

(Laver, Woodin) The grounds are
uniformly Π2 definable.

(Usuba) The grounds are downward
set-directed: Given a set-indexed
collection Wi of grounds there is a ground
W with W ⊆Wi for each i .

Geology can be done in ZFC.

All worlds in the generic multiverse are at
most two steps away: M is a forcing
extension of a ground of N.

K Williams (SHSU) Inner Mantles (2022 June 15) 3 / 38



Aside: geology in a choiceless universe

Open question: Are the grounds uniformly first-order definable
over ZF?

(Gitman–Johnstone) If V is an extension of W by a poset of
cardinality ≤ δ and W |= DCδ then W is definable in V.

(Usuba) If there is a proper class of Löwenheim–Skolem
cardinals then the grounds are uniformly first-order definable.

(Usuba) If there is a proper class of Löwenheim–Skolem
cardinals then the symmetric grounds are uniformly
first-order definable.
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The mantle

The mantle M is the intersection of all
grounds.

The mantle is an inner model of ZFC.

The mantle is invariant under set forcing,
and is indeed the largest set
forcing-invariant inner model.

The bedrock axiom V = M asserts there
are no nontrivial grounds.

(Reitz) You can class force the bedrock
axiom.

This follows from Usuba’s theorem plus a
result of Fuchs–Hamkins–Reitz.
This also follows from Usuba’s theorem plus a
result of Fuchs–Hamkins–Reitz.
The bedrock axiom is true in, e.g., L while it is
destroyed by set forcing.
Do a set-support iteration of lottery sums to
generically make the GCH fail/succeed at each
regular cardinal.
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Non-absoluteness and the mantle

(Fuchs–Hamkins–Reitz) Every model of
ZFC is the mantle of some class forcing
extension.

Thus, the mantle is not absolute. In
particular, it is consistent that MM 6= M.

Proof: Force with the set-support product of
lottery sums to generically make the GCH fail
or succeed at each regular cardinal.

(V ⊆ MV[G ]) By density, any set of
ordinals in V is coded cofinally often into
the GCH pattern of V[G ], so any set of
ordinals in V is in every ground of the
extension.
Key point: grounds are correct about a
tail of the GCH pattern.

(V ⊇ MV[G ]) Consider x ∈ V[G ] \V. The
forcing can be factored into the product of
a set-sized head and a sufficiently
distributive tail so that the tail forcing
could not add x . But then V[G tail] is a
ground which misses x .
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Inner Mantles

The sequence of inner mantles Mi is defined
inductively.

M0 = V;

Mi+1 = MMi
;

M` =
⋂

i<`M
i for limit ordinals `.

The sequence stabilizes at η if η is least so
that Mη+1 = Mη.

Let’s take a step back and be more careful.

The definition of M quantified over
classes, and it’s a nontrivial theorem that
there’s a definition only quantifying over
sets.

The definition of the sequence of inner
mantles quantifies over classes. Is there an
elementary definition?

Observation: If Mi is a definable class, then
Mi+1 is a definable inner model of ZFC. So
the only problem can be at limit stages.
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Inner Mantles: good, bad, and ugly

The sequence of inner mantles Mi is defined
inductively.

M0 = V;

Mi+1 = MMi
;

M` =
⋂

i<`M
i for limit ordinals `.

The Good: Consistently, the sequence of inner
mantles can be as long as you like.

Theorem (Reitz–W.):
There is a class forcing notion, uniformly
definable in η, which forces

The ground model is the η-th inner
mantle; and
The sequence of inner mantles doesn’t
stabilize before η.

The Bad: There can be problems at limit
stages

Theorem (W.):
It can be that M` fails to be definable
while Mi is definable for all i < `?
It can be that M` is a definable model of
¬AC.

(Compare to the classical theorems about iterated HOD by Harrington

and McAloon.)

The Ugly: To prove these theorems we will
iterate forcings on orders which aren’t
well-orders.
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0 Introduction

1 The Good: Positive Results (Joint with Reitz)
Creationism for set theoretic geology

2 The Bad: Negative Results
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Every model is the η-th inner mantle of another universe

Theorem (Reitz–W.)

There is a class forcing notion M(η), uniformly definable in a
parameter η ∈ Ord, so that forcing with M(η) produces a model
V[G ] satisfying

V = (Mη)V[G ]

where Mi ) Mi+1 for all i < η.
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Overview of the proof

If η is finite, this is easy. Just repeatedly force with the
Fuchs–Hamkins–Reitz partial order. Then you get
V[ ~G ] = V[G1] · · · [Gη] satisfying

(M1)V[ ~G ] = V[G1] · · · [Gη−1];

(M2)V[ ~G ] = V[G1] · · · [Gη−2];

...

(Mη−1)V[ ~G ] = V[G1];

(Mη)V[ ~G ] = V.

The problem: the order of the inner mantles reverses the order of
the iteration. For infinite η, we want to force with an η?-iteration
of class products, not an η-iteration.

Set theorists do not have a general theory of iterations on
ill-founded orders. But we can handle this specific case.
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Defining the forcing M(η)

R

)
dom p

|
α

p(α) ∈ Add(α, (2<α)++)⊕Add(α+, 1)

)
dom q

q(α) ≤ p(α)

R>i(α) ∩ α

Split R into congruence classes Ri for i < η.

Then 〈R>i : i ∈ η〉 is a (-descending sequence of ordertype η.

For α ∈ R let i(α) be the unique i with α ∈ Ri .

p(α) is a M(η) � (R>i(α) ∩ α)-name for an appropriate condition.

p � (R>i(α) ∩ α) forces over M(η) � (R>i(α) ∩ α) that q(α) ≤ p(α).

R is the
coding region.

q ≤ p.
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Defining the forcing M(η)

Fix a suitable coding region R. Split R into η many congruence classes Ri .
For α ∈ R let i(α) be the unique i < η so that α ∈ Ri . Let R>i have the
obvious meaning.

M(η) is the class forcing

whose conditions are set-sized functions p with domain an initial
segment of R

so that for all α ∈ dom p we have p(α) is an M(η) � (R>i(α) ∩α)-name
for a condition in Add(α, (2<α)++)⊕Add(α+, 1).

For p, q ∈M(η), say that q ≤ p if

dom q ⊇ dom p and
for all α ∈ dom p we have p � (R>i(α) ∩ α) forces over
M(η) � (R>i(α) ∩ α) that q(α) ≤ p(α).

For later purposes we will need M(η) to be η+-distributive. This is easily
arranged by having R only contain cardinals ≥ η+.
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Questions about M(η)

M(η) was defined as a weird iteration of ordertype Ord. In what sense
can we think of it as an iteration of ordertype η??

What closure/distributivity conditions are satisfied by the stages of
M(η)?

Does it even preserve ZFC?

Using the technology of generalized Cohen iterations we can answer these
questions.

M(η) is a progressively distributive iteration: for α ∈ R, M(η) factors
as M(η) ∼= M(η)head ∗Mtail where M(η)head 
Mtail is α-distributive.

In particular, M(η) preserves ZFC.

M(η) preserves R and each Ri .

The same holds for M(η) � R≥i .
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M(η) as an η?-iteration

For notational convenience: set P = M(η) and Pi = M(η) � R≥i .

Observation

P = P0 ⊇ P1 ⊇ · · · ⊇ Pi ⊇ · · · ⊇ Pη i ≤ η

is a continuous descending chain of class forcing notions, and for i < j we
have Pj is a complete suborder of Pi .
In particular, P factors as Pi ∗ Q̇tail for each i < η.

Let G ⊆ P be generic over V, and let Gi be the restriction of G to Pi . In
particular Gη is the trivial filter over the trivial forcing Pη.

Claim

For i ≤ η, (Mi )V[G ] = V[Gi ].

Prove this by induction.
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The successor step

Pi factors as Pi+1 ∗ Q̇i where

Qi =
∏
α∈Ri

Add(α, (2<α)++)⊕Add(α+, 1).

Now do the Fuchs–Hamkins–Reitz argument.
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The limit step

Lemma (Jech)

Let i be a limit ordinal and

B0 ⊇ B1 ⊇ · · · ⊇ Bj ⊇ · · · ⊇ Bi

be a continuous descending sequence of
complete sub-boolean algebras, where B0

is i+-distributive. If G0 ⊆ B0 is generic
over V and X ∈ V [Gj ] for all j < i , then
X ∈ V [Gi ].

Jech’s proof doesn’t transfer directly to
the context of class forcing, as class
forcing notions may lack Boolean
completions.

But if P is a progressively distributive
iteration, factoring as Qα ∗Qtail for
arbitrarily large α so that the Pj ∩Qα

form a chain like in Jech’s lemma, then we
get the conclusion of Jech’s lemma.

This is where we use the assumption that
P = M(η) is η+-distributive!
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Aside: what is iterated HOD in VM(η)?

Theorem (Reitz–W.) In the forcing
extension by M(η), the sequences of inner
mantles and iterated HOD exactly line up:
Mi = HODi for all i ≤ η.

Can we separate them?

Yes we can. Fuchs, Hamkins, and Reitz give
forcings to separate the mantle and HOD, and
we can build on them to separate iterated
HOD and inner mantles.

Theorem (Reitz–W.) Fix an ordinal η.
There is a forcing which forces the ground
model to be the η-th inner mantle while
forcing the extension to be its own HOD.

And there is another forcing which forces
the ground model to be the η-th iterated
HOD while forcing the extension to be its
own mantle.

Combining these forcings with M(η) we can
make the sequence of iterated HODs and inner
mantles have any two lengths we wish, with
one as an initial segment of the other.
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Aside: open questions on separating the two sequences

Can we more finely control how to separate the two sequences?

Question

Let η be an ordinal. Can we force the sequence the ground model
to be Mη and HODη of the extension, but Mi 6= HODi for all
0 < i < η? Can we moreover get Mi 6= HODj for all 0 < i , j < η?

Question

Let η be an ordinal. Can we force the sequence of inner mantles
to have length η so that Mi = HOD2i for all i ≤ η? What about
vice versa? What if we replace 2 with a different ordinal?
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0 Introduction

1 The Good: Positive Results

2 The Bad: Negative Results
M’omega, mo’ problems
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Set theoretic arbology

To cause problems at the limit stage we will
need to precisely control what sets get into
which inner mantles. For this we will use what
I call tree iterations.
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Coding sets into inner mantles

As a warmup, let’s see how to get a set into
M1 but not M2.

Let’s work over L, and use Cohen coding,
where a set is coded by the pattern of
which cardinals have a subset
Cohen-generic over L.

Add a Cohen real x , and let’s control
where x goes.

To get x into M2 we’d want to in turn code
each cω·ξ+n into the Cohen pattern cofinally
often, and so on to get even deeper.

So there’s a tree-like structure to the order of
the coding.

Coding x into the Cohen pattern once
gets it into HOD, but isn’t enough to get
it into M.

Instead, code it Ord often: force with the
set-support product of Add(ℵω·ξ+n, 1) for
ξ ∈ Ord and n ∈ x .

In L[x ][c̄]: we can recover x in any ground
by looking at the Cohen pattern in
[ℵω·ξ,ℵω·ξ+ω) for some large enough ξ. So
x ∈ M.

However, no Cohen cω·ξ+n ⊆ ℵω·ξ+n

survives into M. Can use this to check
that x 6∈ M2.
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Some complications

We need to add an Ord-branching tree’s
worth of Cohens, so we have to split the
cardinals into many coding blocks.

Our inner mantles will be generated by
proper classes of Cohens, so to ensure we
can correctly line up each inner mantle
with its corresponding class of Cohens we
will use self-encoding forcing.

To avoid coding more than we want, at
each coding point we will use Add(α, 1)
as defined in L. This kills closure
properties, but by general facts about
generalized Cohen iterations we still have
distributivity.

Self-encoding forcing to code x is an
ω-iteration of Cohen forcings.

First code x , get a block of Cohens ~c1.

Given a block ~cn of Cohens, code them,
getting a block of Cohens ~cn+1.

In any extension where you didn’t add any new
Cohens to the coding region, the generic
~c = 〈~cn : n ∈ ω〉 is definable, and this
definition is uniform using only the coding
region as a parameter.

So if we independently do lots of different
coding forcings, in the extension the sequence
of all their generics is definable.
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Tree iterations

Rather than do a linear iteration, we want to
do an iteration P along a tree T .

For convenience, will always do trivial
forcing at the root stage.

The generic at stage s ∈ T should be
generic over V[G � <s]

If s0 6= s1 ∈ T have infimum t, then the
generics at stage s0 and s1 should be
mutually generic over V[G � ≤t].

This amounts to: Do (ordinary) iterations
as you climb up the tree, and take the
product of all stage sa〈i〉 forcings after
the stage s forcing.

An ordinary iteration is a tree iteration
along a non-branching tree.

A product is a tree iteration along a tree
of height 1.

For my context:

All trees are well-founded.

All supports are set-support.
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Technical lemmata

Non-linear iterations have been studied before,
e.g. by Jech and Groszek (1991). Specializing
some of their work about distributivity and
chain conditions to my context, we get:

Safety Lemma: Consider a tree iteration
along T , where for each cardinal κ there
is at most one stage s ∈ T which adds a
Cohen subset to κ. Then, the only Cohen
subsets of κ are those added by stage s.

This is why I use set-support everywhere!
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AC may consistently fail at the ω-th inner mantle

Theorem (W.)

There is a class forcing extension of L in which
the ω-th inner mantle Mω is a definable inner
model of ZF in which P(ω) cannot be
well-ordered.

Proof Outline (following McAloon on HODω):

First add an ω1 sequence A of Cohen reals.

to L[A][c̄] to code each Ak , the sequence
of the tails of the Cohen reals from k
onward, so that Ak gets into Mk but not
into Mk+1.

Then each Cohen real from A is in Mω.

Because the forcing preserves ω1, if Mω

has a well-order of P(ω) it has one of
ordertype ω1.

So it is enough to see that
P(ω)M

ω 6⊆ L[X ] for any X ⊆ ω1 in Mω.

By distributivity, any X ⊆ ω1 in L[A][c̄] is
already in L[A].

Add(ω, ω1) has the ccc, so X was added
by a countable piece of A.

But then some Cohen real from A is
missed by L[X ].
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The coding forcing: coding x into Mk

x∅ = x
R∅

x〈0〉 x〈1〉 x〈2〉 x〈3〉
· · ·

R〈0〉

x〈0,0〉 x〈0,1〉
· · · R〈1〉

x〈1,0〉 x〈1,1〉
· · · · · ·

R〈0,0〉

x〈0,0,0〉
· · · · · · R〈1,0〉

x〈1,0,0〉
· · · · · ·

x is coded Ord often to ensure any ground sees a code.

Now code each code Ord often.

Repeat with a stage for each s ∈ ≤kOrd.

At each stage, use self-encoding forcing. This ensures that if
every Cohen set gets into an inner model, then the entire
sequence is definable in the model.

Call this tree-like
coding by Tk(x) for
short.

k = the height

x = the set to code
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The coding forcing: putting it together

Recall: We want to code to get Ak into Mk

but not deeper.

Force with a full-support product of
Tk(Ak).

This is a product of tree iterations, so it is
a tree iteration.

Call the generic c̄ .

Lemma: Taking inner mantles in L[A][c̄]
corresponds to climbing down the tree of
generics:

Mk = L[c̄−k ],

where c̄−k is the subtree of generics from
nodes distance at least k from the farthest leaf
node above.

In particular, Ak ∈ Mk \Mk+1
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Mω may fail to be a definable class

Theorem (W.)

There is a class-forcing extension of L whose
Mω can define the truth predicate for L.

Thus, there is a (countable, transitive) model
of ZFC whose Mω is not a definable class.

Sketch (Following Harrington on HODω):

Do a (much more complicated!) coding
forcing over L which codes the truth
predicate for L in which cardinals have a
Cohen subset in Mω.

With sufficient care you can do this so
that the forcing is definable from the
Σ0-truth predicate for L.

To then get the “thus”:

Start with a Paris model of V = L, one
whose ordinals are all definable.

(For example, the Shepherdson–Cohen
minimum transitive model of ZFC.)

Then no outer model of ZF can define the
truth predicate for L, as else it could
define a bijection ω → Ord.

So the class-forcing extension for the
theorem cannot have Mω as a definable
class, as then it could define the truth
predicate for L.
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More detail on coding L-truth into Mω

Idea to prove the theorem (Harrington): Assign
to each formula ϕ with parameters from L a
cardinal κ(ϕ). Then code so that Mω has a
Cohen subset of κ(ϕ) iff L |= ϕ. We need to
define the coding forcing using only a bounded
level of truth in L to ensure that the forcing is
definable.

For this we will need more coding tools.

You can code a proper class X , say by
definably breaking X into set-sized chunks
and coding the chunks on definable
subregions.

If you tweak self-encoding forcing to have
Ord many stages instead of ω many, then
not only will the full generic be definable
but also it will remain so in every ground,
whence the coded set will get into all
inner mantles.
Call this robust Cohen coding RCC(x).

You can overwrite a coding block R by
adding a Cohen generic to every α ∈ R.
Let O(R) be the overwrite forcing for R.

It may be that the original codes in R are
still definable—e.g. if they were coded
elsewhere—but you can use overwrite
forcing to erase coded information.
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A toy example of more complicated coding

x a Cohen generic

Y

Z

O

W

T7(Y )

RCC(x)

T7(O)

O(R)

Why not just use T8(x)?

The point: O is what kept x out of M9. If we
had in turn overwritten the code W for O then
we would’ve ensured x ∈ Mω.

The code W ensures O survives to M7, overwriting the region R where the code Y lives.
Nevertheless, before we dig past M7 we can recover Y using the code Z . Namely, Z ensures
that Y is in M7, which in turn ensures that x ∈ M8. But in M7 we no longer have a code for
Y , and the coding region was overwritten. So in M8 we have that x is no longer Cohen coded,
and thus x 6∈ M9.
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Triangle coding—do for every ϕ with parameters from L

cϕ

T2( )

RCC(cϕ)

T1( )

T1( )

T1( )

O(·)

O(·)

for each

x ∈ L

for each

y ∈ L

for each z ∈ L s.t.

L |= ψ(x , y , z)
ϕ = ∃x¬∃y∃z ψ(x , y , z) is Σ3.

cϕ ⊆ κ(ϕ) is Cohen generic.

Always survives to M2 and survives
to M1.

Fix x ∈ L. We want to use to get cϕ is
in Mω, but in M2 is overwritten if
survives.

survives into M2 iff for some y is not
overwritten in M1.

is overwritten in M1 iff gets into M1

iff for some z exists.

Altogether: cϕ gets into Mω iff ∃x ∈ L so
that ¬∃y ∈ L so that ∃z ∈ L so that
L |= ψ(x , y , z).
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A remaining question: is ω special?

For the negative results I showed that Mω can be badly
behaved.

Can we get the same for other limit stages?

We need a way to ensure a set survives into transfinite stage
inner mantles.

K Williams (SHSU) Inner Mantles (2022 June 15) 33 / 38



A remaining question: is ω special?

For the negative results I showed that Mω can be badly
behaved.

Can we get the same for other limit stages?

We need a way to ensure a set survives into transfinite stage
inner mantles.

K Williams (SHSU) Inner Mantles (2022 June 15) 33 / 38



Stretching branches

Start by considering the Reitz–W. forcing
to make V the η-th inner mantle of the
extension.

You can modify this forcing to get a
forcing which ensures x gets into the η-th
inner mantle, and that the sequence
doesn’t stabilize before η.

Also, you can modify it to use Cohen
coding instead of continuum coding.

Call this Sη(x).

By placing an Sη before a subtree in a tree
iteration, you can get that x survives into
Mη, not just finite stages.

(Instead of coding all of V just code x . You can’t use density to pick

where to code, since that codes too much, so you need to do the

bookkeeping by hand.)
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Limit stages may not satisfy AC

Theorem (W.): Let η be a limit ordinal.
There is a class forcing extension of L in which
the η-th inner mantle Mη is a definable inner
model of ZF in which P(cof η) cannot be
well-ordered.

Let λ = cof η and fix a sequence
〈ηi : i < λ〉 cofinal in η.

Add λ+ many Cohen subsets of λ.

Call the block of Cohens by A, and let Ai

denote the block of tails of the Cohens
from i on.

Similar to the ω case but using Sηi s, do a
tree iteration to ensure Ai gets into Mηi

but not into Mηi+1.

The rest of the argument goes through like the ω case.
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Countable cofinality limit stages may not be definable

Theorem (W.): Let η be a limit ordinal with
countable cofinality. There is a class-forcing
extension of L whose Mη can define the truth
predicate for L.

Fix a sequence 〈ηn : n < ω〉 cofinal in η.

Using Sηn and triangle coding, you can
ensure cϕ ⊆ κ(ϕ) always survives into Mηn

but only survives past Mηn+n if L |= ϕ.
(Where ϕ is Σn.)

So Mη can define truth for L by querying
whether κ(ϕ) has a Cohen subset.
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Thank you!
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