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Set theoretic geology

Question (Reitz): Can we do forcing, but
backward?

An inner model W ⊆ V is a ground if
V = W [G ] for some G ∈ V generic over
W for a poset P ∈W .

Two foundational theorems:

(Laver, Woodin) The grounds are
uniformly Π2 definable.

(Usuba) The grounds are downward
set-directed: Given a set-indexed
collection Wi of grounds there is a ground
W with W ⊆Wi for each i .

Geology can be done in ZFC.
(We seem to need AC; Gitman–Johnstone and

Usuba have partial results.)

All worlds in the generic multiverse are at
most two steps away: M is a forcing
extension of a ground of N.
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The mantle

The mantle M is the intersection of all
grounds.

The mantle is an inner model of ZFC.

The mantle is invariant under set forcing,
and is indeed the largest set
forcing-invariant inner model.

The bedrock axiom V = M asserts there
are no nontrivial grounds.

(Reitz) You can class force the bedrock
axiom.

This follows from Usuba’s theorem plus a
result of Fuchs–Hamkins–Reitz.
This also follows from Usuba’s theorem plus a
result of Fuchs–Hamkins–Reitz.
The bedrock axiom is true in, e.g., L while it is
destroyed by set forcing.
Do a set-support iteration of lottery sums to
generically make the GCH fail/succeed at each
regular cardinal.
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Non-absoluteness and the mantle

(Fuchs–Hamkins–Reitz) Every model of
ZFC is the mantle of some class forcing
extension.

Thus, the mantle is not absolute. In
particular, it is consistent that MM 6= M.

Proof: Force with the set-support product P of
lottery sums to generically make the GCH fail
or succeed at each regular cardinal.

(V ⊆ MV[G ]) By density, any set of
ordinals in V is coded cofinally often into
the GCH pattern of V[G ]. Since set
forcing cannot affect GCH on a proper
class, any set of ordinals in V is in every
ground of the extension.

(V ⊇ MV[G ]) Consider x ∈ V[G ] \V. The
forcing P is a progressively distributive
product, so we can factor it into the
product of a set-sized head and a
sufficiently distributive tail so that the tail
forcing could not add x . But then V[G tail]
is a ground which misses x .
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Inner Mantles

The sequence of inner mantles Mi is defined
inductively.

M0 = V;

Mi+1 = MMi
;

M` =
⋂

i<`M
i for limit ordinals `.

The sequence stabilizes at η if η is least so
that Mη+1 = Mη.

(Reitz–W.) Every model of set theory is
the η-th inner mantle of some class
forcing extension, for every ordinal η.

Thus, for any ordinal η it is consistent
that the sequence of inner mantles
stabilizes at exactly η.

If Mi is a definable class, then Mi+1 is a
definable inner model of ZFC.

Question (Fuchs–Hamkins–Reitz): Can
this fail at limit stages? More precisely:

Must M` be definable, if Mi is definable
for all i < `?

Must M` satisfy AC, if Mi is definable for
all i < `?

Compare to the classical questions about
iterated HOD, answered by Harrington
and McAloon.

Do an η? iteration of the FHR forcing.
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Set theoretic arbology

Boise is the City of Trees, so I’m obligated to
use trees in this talk.

To answer the FHR questions, we need to
precisely control which sets get into which
inner mantles. For this we will use what I call
tree iterations.
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Coding sets into inner mantles

As a warmup, let’s see how to get a set into
M1 but not M2.

Let’s work over L, and use Cohen coding,
where a set is coded by the pattern of
which cardinals have a subset
Cohen-generic over L.

Add a Cohen real x , and let’s control
where x goes.

To get x into M2 we’d want to in turn code
each cω·ξ+n into the Cohen pattern cofinally
often, and so on to get even deeper.

So there’s a tree-like structure to the order of
the coding.

Coding x into the Cohen pattern once
gets it into HOD, but isn’t enough to get
it into M.

Instead, code it Ord often: force with the
set-support product of AddL(ℵω·ξ+n, 1)
for ξ ∈ Ord and n ∈ x .

In L[x ][c̄]: we can recover x in any ground
by looking at the Cohen pattern in
[ℵω·ξ,ℵω·ξ+ω) for some large enough ξ. So
x ∈ M.

However, no Cohen cω·ξ+n ⊆ ℵω·ξ+n

survives into M. Can use this to check
that x 6∈ M2.
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An aside: when you need Ord much space

Hilbert’s Ord-Hotel

To code a set into the mantle, we need
Ord much space.

So if we’re coding multiple sets into
mantles, we need multiple Ord-sized
regions for coding.

In a region R: code whether i ∈ x by
whether the i-th cardinal in R contains a
Cohen subset.

This is easily arranged, and if our forcings
preserve cardinals then it is easy to do so
in an absolute way.
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Tree iterations

Rather than do a linear iteration, we want to
do an iteration P along a tree T .

For convenience, will always do trivial
forcing at the root stage.

The generic at stage s ∈ T should be
generic over V[G � <s]

If s0 6= s1 ∈ T have infimum t, then the
generics at stage s0 and s1 should be
mutually generic over V[G � ≤t].

This amounts to: Do (ordinary) iterations
as you climb up the tree, and take the
product of all stage sa〈i〉 forcings after
the stage s forcing.

An ordinary iteration is a tree iteration
along a non-branching tree.

A product is a tree iteration along a tree
of height 1.

In particular, a product of tree iterations is
itself a tree iteration.

For my context:

All trees are well-founded.

All supports are set-support.
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mutually generic over V[G � ≤t].

This amounts to: Do (ordinary) iterations
as you climb up the tree, and take the
product of all stage sa〈i〉 forcings after
the stage s forcing.

An ordinary iteration is a tree iteration
along a non-branching tree.

A product is a tree iteration along a tree
of height 1.

In particular, a product of tree iterations is
itself a tree iteration.

For my context:

All trees are well-founded.

All supports are set-support.
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K Williams (U. Hawai‘i @ Mānoa) Coding sets into inner mantles (2021 June 19) 9 / 18



Tree iterations

Rather than do a linear iteration, we want to
do an iteration P along a tree T .

For convenience, will always do trivial
forcing at the root stage.

The generic at stage s ∈ T should be
generic over V[G � <s]

If s0 6= s1 ∈ T have infimum t, then the
generics at stage s0 and s1 should be
mutually generic over V[G � ≤t].

This amounts to: Do (ordinary) iterations
as you climb up the tree, and take the
product of all stage sa〈i〉 forcings after
the stage s forcing.

An ordinary iteration is a tree iteration
along a non-branching tree.

A product is a tree iteration along a tree
of height 1.

In particular, a product of tree iterations is
itself a tree iteration.

For my context:

All trees are well-founded.

All supports are set-support.
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Technical lemmata

Non-linear iterations have been studied before,
e.g. by Groszek and Jech (1991). Specializing
some of their work to my context, we can get:

Safety Lemma: A tree iteration of Cohen
coding forcings along a tree T only adds a
Cohen subset to α if some iterand Q̇s for
a stage s ∈ T adds a Cohen to α, and this
iterand is the only thing adding a Cohen.

This is why I use set-support everywhere!

Let T−1 ⊆ T be the subtree consisting of all
non-leaf nodes. Using Reitz’s technology of
generalized Cohen iterations can see:

A tree iteration P along T of Cohen
coding forcings can be factored as
(P � T−1) ∗ Ṙ where Ṙ is a progressively
distributive product.
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AC may consistently fail at the ω-th inner mantle

Theorem (W.)

There is a class forcing extension of L in which
the ω-th inner mantle Mω is a definable inner
model of ZF in which P(ω) cannot be
well-ordered.

Proof Outline (following McAloon on HODω):

First add an ω1 sequence A of Cohen reals.

to L[A][c̄] to code each Ak—the sequence
of the tails of the Cohen reals from k
onward—so that Ak gets into Mk but not
into Mk+1.

Then each Cohen real from A is in Mω.

Because the forcing preserves ω1, if Mω

has a well-order of P(ω) it has one of
ordertype ω1.

So it is enough to see that
P(ω)M

ω 6⊆ L[X ] for any X ⊆ ω1 in Mω.

By distributivity, any X ⊆ ω1 in L[A][c̄] is
already in L[A].

Add(ω, ω1) has the ccc, so X was added
by a countable piece of A.

But then some Cohen real from A is
missed by L[X ].
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The coding forcing: coding x into Mk

x∅ = x
R∅

x〈0〉 x〈1〉 x〈2〉 x〈3〉
· · ·

R〈0〉

x〈0,0〉 x〈0,1〉
· · · R〈1〉

x〈1,0〉 x〈1,1〉
· · · · · ·

R〈0,0〉

x〈0,0,0〉
· · · · · · R〈1,0〉

x〈1,0,0〉
· · · · · ·

x is coded Ord often to ensure any ground sees a code.

Now code each code Ord often.

Repeat with a stage for each s ∈ ≤kOrd.

At each stage, use self-encoding forcing, an ω-iteration of
products of Cohen forcing where each stage codes the
previous generics. This ensures that if every Cohen set gets
into an inner model, then the entire sequence is in the model.

Call this tree-like coding by
Tk(x) for short.

k = the height

x = the set to code
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The coding forcing: putting it together

Recall: We want to code to get Ak into Mk

but not deeper.

Force with a full-support product of
Tk(Ak).

This is a product of tree iterations, so it is
a tree iteration.

Call the generic c̄ .

Lemma: Taking inner mantles in L[A][c̄]
corresponds to climbing down the tree of
generics:

Mk = L[c̄−k ],

where c̄−k is the subtree of generics from
nodes distance at least k from the farthest leaf
node above.

In particular, Ak ∈ Mk \Mk+1
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Mω may fail to be a definable class

Theorem (W.)

There is a class-forcing extension of L whose
Mω can define the truth predicate for L.

Thus, there is a (countable, transitive) model
of ZFC whose Mω is not a definable class.

Sketch (Following Harrington on HODω):

Do a (much more complicated!) coding
forcing over L which codes the truth
predicate for L in which cardinals have a
Cohen subset in Mω.

With sufficient care you can do this so
that the forcing is definable from the
Σ0-truth predicate for L.

To then get the “thus”:

Start with a Paris model of V = L, one
whose ordinals are all definable.
(For example, the Shepherdson–Cohen

minimum transitive model of ZFC.)

Then no outer model of ZF can define the
truth predicate for L, as else it could
define a bijection ω → Ord.

So the class-forcing extension for the
theorem cannot have Mω as a definable
class, as then it could define the truth
predicate for L.
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Aside: ω-nonstandard models

You can do this coding truth-in-L construction
in ω-nonstandard models.

Corollary (W.)

There is ω-nonstandard N |= ZFC so that,
in N, Mk is a definable class if and only if
k is standard.

For any ω-nonstandard L |= ZFC + V = L
and any e ∈ ωL there is a class forcing
extension L[G ] in which Mk is a definable
class if and only if k < e + n for some
standard n.
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A couple questions

What else are tree-patterned codings good for?

Can these ideas be pushed to prove more subtle results about
inner mantles, and how they relate to the sequence of
iterated HODs?

Is there anything special about ω? Can the same results be
obtained at any limit stage?
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Thank you!
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K Williams (U. Hawai‘i @ Mānoa) Coding sets into inner mantles (2021 June 19) 18 / 18

https://arxiv.org/abs/2106.07812

