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A very accurate and nuanced early history of the
foundations of computation

Find an algorithm to solve the
Entscheidungsproblem*.

No.

* (Given a logical formula determine whether it is true in all structures.)
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In a bit more detail

The strategy to show an algorithm solves the Entscheidungsproblem
is straightforward: exhibit the algorithm and check it does what you
want.

But how to show that there can be no such algorithm?

Need an abstract notion of algorithm so that you can do math with
this definition.

Alonzo Church (1936), Alan Turing (1936), and others gave
formalizations, which turn out to be equivalent.

And since then there has been an explosion in equivalent
characterizations, e.g. (an idealized version of) your favorite programming
language.

An advantage to giving a talk in 2020 is that computers are so
ubiquitous I don’t need to give you the formal definition of a Turing
machine (TM).
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Turing reduced the Entscheidungsproblem to the halting
problem

Theorem (Turing)

There is no Turing machine which accepts as input a TM p and input n for
p and determines whether or not p with halt on n and produce an answer.

Hard part! Turing showed that TMs are powerful enough to do
computations involving other TMs. Indeed, he showed there is a
universal machine which can simulate any TM.

Other hard part! Turing’s conceptual analysis to argue that his
formalization correctly captures the intuitive notion of computability.

Easy part! Do a diagonalization argument.
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The easy part: the diagonalization argument

Toward a contradiction suppose H is a TM which decides whether or not p
halts on input n. Let’s build a new TM D.

DH
〈p, p〉

p

yes or no

if yes
loop

if no
yes

Now ask: what happens when D is input to D?
Then it halts iff it doesn’t. E
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K. Williams (U. Hawai‘i @ Mānoa) Incompleteness & the universal algorithm TMWYF (2020 Sept 17) 5 / 27



From computability theory to proof theory

Let’s talk about another kind of undecidability, in terms of
what you can prove instead of what you can compute.
And then we’ll see how the two kinds of undecidability
relate.
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A very accurate and nuanced history of the incompleteness
theorems

Find axioms that decide all questions
of natural number arithmetic.

No.
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The incompleteness theorems

Peano arithmetic (PA) axiomatizes natural number arithmetic: axioms of
discretely ordered semirings + induction axioms.

Theorem (Gödel’s first and second incompleteness theorems)

1 No computably axiomatizable extension of PA is complete. There
must be an arithmetic statement it neither proves nor disproves.

2 PA can neither prove nor disprove the consistency of PA.

Hard part! (Arithmetization) Gödel showed that logical formulae can
be coded as natural numbers, so statements about logic and proof
can be coded as statements about natural numbers.

Easy part! (Self-reference) Do a diagonalization argument.

We need the restriction. True arithmetic TA—the set of all truths of N—is
a complete extension of PA.
(Moreover, the low basis theorem implies that there are complete extensions of PA which are arithmetically definable,

specifically, ∆2 in the arithmetical hierarchy.)
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Arithmetization

Gödel’s beta lemma states that arbitrary finite sequences can be
coded as a single number, and this is provable within PA.

Thus any finite mathematical object can be coded in arithmetic.

What is a finite semiring? It’s a tuple 〈R,+,×〉 satisfying certain
axioms. Represent R by a sequence of its elements and + and × by
sequences giving their multiplication tables. So you can write an
arithmetic formula which expresses “n codes a finite semiring”.

+ 1 a b 0
1 1 1 1 1
a 1 a 1 a
b 1 1 b b
0 1 a b 0

× 1 a b 0
1 1 a b 0
a a a 0 0
b b 0 b 0
0 0 0 0 0

More relevant to this talk, objects like Turing machines or logical
formulae can be coded in arithmetic.

Statements like “PA does not prove 0 = 1” or “such and such Turing
machine halts” can be cast as statements in arithmetic.
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Arithmetization

(Taken with permission from Victoria Gitman’s lecture notes for Mathematical

Logic, Spring 2013.)
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Self-reference
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Self-reference

The Gödel fixed-point lemma states that a form of self-reference is
possible for logical formulae.
(Formally: for any formula ϕ(x) there’s a sentence σ so that σ is PA-provably equivalent to ϕ(σ).)

You can now prove a form of the first incompleteness theorem by
considering σ PA-provably equivalent to “σ is not PA-provable”.

Suppose PA proves σ. Then PA proves that σ is not provable.
Whence PA does not prove σ. E

Suppose PA proves ¬σ. Then PA proves that σ is provable. Whence
PA does prove σ. E
(You need an additional lemma for those whences, one we will see on Slide 19. If you’ve heard of “ω-consistency”, this

is where it shows up.)

Some people say the incompleteness theorems are difficult to prove. But if
you handwave over the actual hard parts you can fit the proof on one slide.
:)
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Self-reference

Also have self-reference for computability theory, via the Kleene
recursion theorem. Informally, Turing machines can refer to
themselves.
(Formally: for any partial computable function F (x, y) there’s a TM p so that p computes the function y 7→ F (p, y).)

A fun application: programming languages admit quines—programs that
output their own source code.

;; Quine in Common Lisp

((lambda (x) (list x (list ’quote x)))

’(lambda (x) (list x (list ’quote x))))
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Incompleteness and Turing machines

The incompleteness theorems can be recast as saying that whether certain
Turing machines halt is undecidable.

A TM p:

Look at all length 1 proofs from
the first 1 axiom of PA.

Then look at all length 2 proofs
from the first 2 axioms of PA.
...

If at any point you see a proof
that ends with 0 = 1, halt and
output affirmatively.

Whether p halts is independent of
PA.

Adam Yedidia and Scott
Aaronson do even better.

They constructed a TM of size
7910 so that whether it halts is
independent of ZFC, but ZFC +
large cardinals does prove it
halts.
(Specifically an ineffable cardinal will do.)
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If you liked Gödel’s incompleteness theorems, you’ll love
his completeness theorem

Theorem (Gödel’s Completeness Theorem)

1 A set of axioms T is consistent if and only if there is a structure
satisfying T .

2 ϕ is true in every structure satisfying T if and only if ϕ is a theorem
of T .

(This is for axioms in first-order logic.)

This lets us translate talk about proofs, consistency, etc. to talk
about structures.

The incompleteness theorems plus the completeness theorem together
imply there must be non-isomorphic structures satisfying the axioms
of arithmetic.

What could these even look like???
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Nonstandard models of arithmetic

A model of (Peano) arithmetic is a discretely ordered semiring whose
definable subsets are inductive.

M

0 1 2 3 · · ·

)

N

e

e ± Z

2e

2e ± Z

⌊
e
2

⌋
⌊
e
2

⌋
± Z

⌊
3e
2

⌋⌊
3e
4

⌋
a dense linear order of Z-blocks

X ⊆ M is definable if you can express x ∈ X just by quantifying over
the elements of M and using the semiring operations and order of M.

X ⊆ M is inductive if 0 ∈ X and a ∈ X ⇒ a + 1 ∈ X implies X = M.
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M has a least element 0M (= the additive identity for M) because the set
{x ∈ M : x ≥ 0M} satisfies the inductive hypotheses.
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N embeds as an initial segment on any model of arithmetic.

K. Williams (U. Hawai‘i @ Mānoa) Incompleteness & the universal algorithm TMWYF (2020 Sept 17) 16 / 27



Nonstandard models of arithmetic

A model of (Peano) arithmetic is a discretely ordered semiring whose
definable subsets are inductive.

M

0 1 2 3 · · ·

)

N

e

e ± Z

2e

2e ± Z

⌊
e
2

⌋
⌊
e
2

⌋
± Z

⌊
3e
2

⌋⌊
3e
4

⌋
a dense linear order of Z-blocks

If e ∈ M \ N then e > n for all n ∈ N.
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All non-zero elements have a predecessor because
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satisfies the induction hypotheses.
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K. Williams (U. Hawai‘i @ Mānoa) Incompleteness & the universal algorithm TMWYF (2020 Sept 17) 16 / 27



Nonstandard models of arithmetic

A model of (Peano) arithmetic is a discretely ordered semiring whose
definable subsets are inductive.

M

0 1 2 3 · · ·

)

N

e

e ± Z

2e

2e ± Z

⌊
e
2

⌋
⌊
e
2

⌋
± Z

⌊
3e
2

⌋

⌊
3e
4

⌋
a dense linear order of Z-blocks
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K. Williams (U. Hawai‘i @ Mānoa) Incompleteness & the universal algorithm TMWYF (2020 Sept 17) 16 / 27



Nonstandard models of arithmetic

A model of (Peano) arithmetic is a discretely ordered semiring whose
definable subsets are inductive.

M

0 1 2 3 · · ·

)

N

e

e ± Z

2e

2e ± Z

⌊
e
2

⌋
⌊
e
2

⌋
± Z

⌊
3e
2

⌋⌊
3e
4

⌋
a dense linear order of Z-blocks
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Facts about nonstandard models of arithmetic

First constructed by Thoralf Skolem. (Skolem used an ultrapower construction.)

There are many different nonisomorphic models of arithmetic of any
infinite cardinality. In particular, there are 2ℵ0 isomorphism classes for
countable models of arithmetic.

If M is countable, then its ordertype is exactly N + Z ·Q. (Because Q
is the unique countable dense linear order without endpoints.)

In particular, all countable nonstandard models of arithmetic are
order-isomorphic.

Open Question (Harvey Friedman): N has the property that if a
model of arithmetic is order-isomorphic to it then they are fully
isomorphic. Does any other model of arithmetic have this property?

(Stanley Tennenbaum) If M is nonstandard then neither the + nor ×
of M is a computable function.

K. Williams (U. Hawai‘i @ Mānoa) Incompleteness & the universal algorithm TMWYF (2020 Sept 17) 17 / 27



Facts about nonstandard models of arithmetic

First constructed by Thoralf Skolem. (Skolem used an ultrapower construction.)

There are many different nonisomorphic models of arithmetic of any
infinite cardinality. In particular, there are 2ℵ0 isomorphism classes for
countable models of arithmetic.

If M is countable, then its ordertype is exactly N + Z ·Q. (Because Q
is the unique countable dense linear order without endpoints.)

In particular, all countable nonstandard models of arithmetic are
order-isomorphic.

Open Question (Harvey Friedman): N has the property that if a
model of arithmetic is order-isomorphic to it then they are fully
isomorphic. Does any other model of arithmetic have this property?

(Stanley Tennenbaum) If M is nonstandard then neither the + nor ×
of M is a computable function.
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Turing machines in a nonstandard world

M)

N

p

p2 + 2 = 4q

s

p0 = 1q

t

Consider p the TM which enumerates the theorems of arithmetic.

s is a computation log witnessing that p outputs p2 + 2 = 4q.
(s is a number coding the sequence of computation steps. Checking that s has this property only requires looking in N.)

If we run p in N, then we never output p0 = 1q.

But what if we run p in nonstandard M which thinks arithmetic is
inconsistent?

Then there is a computation log t witnessing that p outputs p0 = 1q.
But t must be nonstandard! In other words, we had to run p for a
nonstandard number of steps to output p0 = 1q.

The point: By moving to a larger world we made p output more
numbers.
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The absoluteness of computability

In summary:

The statement “the TM p outputs n for some input” is upward
absolute—if it’s true it stays true if we end-extend to a larger model.
(Logicians call this sort of statement a Σ1 statement. By the MRDP theorem, these are the statements equivalent to

one whose only quantifiers are a block of ∃s.)

By Gödel’s completeness theorem plus the last slide, Peano arithmetic
proves every true (i.e. in N) statement of this form.

But the statement “the TM p does not output n for some input” is
not upward absolute. (It is downward absolute though.)
(Logicians call this sort of statement a Π1 statement.)

Both the first and second incompleteness theorems are about
statements of this form.
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Woodin’s universal algorithm

We’ve seen that the behavior of a
Turing machine can be undecidable.

Proof theoretic: It may be
independent of PA how p
behaves.

Model theoretic: Running p in
different nonstandard models of
arithmetic may produce different
behavior.

I want to talk about a striking case
of the undecidability of how Turing
machines behave, due to W. Hugh
Woodin, where p can output
anything at all if run in the right
universe!
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Woodin’s universal algorithm, first form

Theorem (Woodin)

There is a Turing machine p with the following properties.

1 p provably enumerates a finite sequence.

2 Running p inside N never produces any output, i.e. it enumerates the
empty sequence.

3 But, for any finite sequence s of natural numbers there is a
nonstandard model of arithmetic M so that running p in M
enumerates exactly s.
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Woodin’s algorithm
(This construction for Woodin’s theorem is due to Joel David Hamkins.)

The Turing machine p:

p searches through the proofs of Peano arithmetic, looking at the
theorems they prove.

p is looking for a theorem of the form “p does not enumerate the
sequence s”, for s some nonempty finite sequence of numbers.
(p can refer to itself by the Kleene Recursion theorem.)

If p ever sees this, then p outputs the sequence s.

Claim: Run in N, p outputs the empty sequence.

Otherwise p outputs some s. So Peano arithmetic proves this true Σ1

statement. But by the definition of p, this also means that Peano
arithmetic proves that p does not output s. This would mean that Peano
arithmetic is inconsistent. But it’s not.
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Checking the extension property

Definition (The Turing machine p)

p searches through the proofs of Peano arithmetic, looking for a
theorem of the form “p does not enumerate the sequence s”, for s
some nonempty sequence of numbers.

If p ever sees this, then p outputs the sequence s.

Fix a finite sequence of natural numbers s. We want to find a nonstandard
model of arithmetic M in which running p outputs s.

Claim: Peano arithmetic + “p outputs s” is consistent.

Otherwise “p does not output s” is a theorem of Peano arithmetic. But
then running p in N would output a nonempty sequence. We just saw that
is not the case.

So by Gödel’s completeness theorem we can find a model of arithmetic in
which p outputs s.

K. Williams (U. Hawai‘i @ Mānoa) Incompleteness & the universal algorithm TMWYF (2020 Sept 17) 23 / 27



Checking the extension property

Definition (The Turing machine p)

p searches through the proofs of Peano arithmetic, looking for a
theorem of the form “p does not enumerate the sequence s”, for s
some nonempty sequence of numbers.

If p ever sees this, then p outputs the sequence s.

Fix a finite sequence of natural numbers s. We want to find a nonstandard
model of arithmetic M in which running p outputs s.

Claim: Peano arithmetic + “p outputs s” is consistent.

Otherwise “p does not output s” is a theorem of Peano arithmetic. But
then running p in N would output a nonempty sequence. We just saw that
is not the case.
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K. Williams (U. Hawai‘i @ Mānoa) Incompleteness & the universal algorithm TMWYF (2020 Sept 17) 23 / 27



Checking the extension property

Definition (The Turing machine p)

p searches through the proofs of Peano arithmetic, looking for a
theorem of the form “p does not enumerate the sequence s”, for s
some nonempty sequence of numbers.

If p ever sees this, then p outputs the sequence s.

Fix a finite sequence of natural numbers s. We want to find a nonstandard
model of arithmetic M in which running p outputs s.

Claim: Peano arithmetic + “p outputs s” is consistent.

Otherwise “p does not output s” is a theorem of Peano arithmetic. But
then running p in N would output a nonempty sequence. We just saw that
is not the case.
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Woodin’s universal algorithm, general form

Theorem (Woodin)

There is a Turing machine p with the following
properties.

1 p provably enumerates a finite sequence.

2 Running p inside N never produces any output,
i.e. it enumerates the empty sequence.

3 Suppose M a model of arithmetic in which p
enumerates s and that s∗ is a sequence in M
which extends s. Then we can end-extend M
to a larger model of arithmetic M∗ in which p
enumerates s∗.

M

M∗

s

s∗

Proof idea: Do a similar argument, but internally to M. Need some more
technical lemmata to check that the argument can be arithmetized.
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Aside: What about the fourth pillar of mathematical logic?

Traditionally mathematical logic has been divided into four pillars:
computability theory, proof theory, model theory, and set theory.*

So far in this talk we’ve seen the first three of these. What about the
fourth?

Analogous to Woodin’s universal algorithm in arithmetic there are results
in set theory, where there’s more than one sensible notion of extension to
consider. In set theory: Hamkins and Woodin construct a universal
sequence for rank-extensions, and Hamkins and Williams construct a
universal sequence for end-extensions.

M

M∗

rank-extension

M

M∗

end-extension

* (Recent developments e.g. in categorical logic undermine this taxonomy.)
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Arithmetic potentialism

...
...

...

Imagine climbing through the tree of nonstandard
models of arithmetic, continually end-extending.

This potentialist system gives a nonstandard twist on
Aristotle’s notion of the potential infinite.

There is a natural interpretation in modal
logic—extend ordinary logic by adding two new
operators

ϕ means ϕ is necessarily true—true in all extensions.
ϕ means ϕ is possibly true—true in some extension.

(Hamkins) Can use Woodin’s universal algorithm to
calculate which modal assertions are valid (true in any
world under any substitution of variables).
(Namely, those in the modal theory S4.)

(Hamkins) There are models of arithmetic which
satisfy the maximality principle—if ϕ then ϕ.
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Thank you for letting me talk math with
my friends!
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