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Undecidability

In the 1930s Alan Turing formalized the concept of algorithm, as part
of a project investigating the limits of computability. Others gave
equivalent formalizations, but it is the Turing machine which has
become the standard in computability theory.

One advantage of talking about this in 2020 is you all have experience
with computers, so you don’t need to see the definition. You can
think of Turing machines as your favorite programming language
(abstracting away things like limited memory).

Turing showed that there are some questions which are
undecidable—there is no algorithm to decide all instances.
For example:

Does a Turing machine halt on a given input?
Hilbert’s Entscheidungsproblem. (Turing, Church)
Does a Diophantine equation have an integer solution? (MRDP
theorem)
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The incompleteness theorems

Peano arithmetic (PA) axiomatizes natural number arithmetic: axioms of
discretely ordered semirings + induction axioms.

Theorem (Gödel’s first and second incompleteness theorems)

1 No computably axiomatizable extension of PA is complete. There
must be an arithmetic statement it neither proves nor disproves.

2 PA can neither prove nor disprove the consistency of PA.

Hard part! (Arithmetization) Gödel showed that logical formulae can
be coded as natural numbers, so statements about logic and proof
can be coded as statements about natural numbers.

Easy part! (Self-reference) Do a diagonalization argument.

We need the restriction. True arithmetic TA—the set of all truths of N—is
a complete extension of PA.
(Moreover, the low basis theorem implies that there are complete extensions of PA which are arithmetically definable,

specifically, ∆2 in the arithmetical hierarchy.)
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Arithmetization

Gödel’s beta lemma states that arbitrary finite sequences can be
coded as a single number, and this is provable within PA.

Thus any finite mathematical object can be coded in arithmetic.

Relevant to this talk, objects like Turing machines or logical formulae
can be coded in arithmetic.

And so statements like “PA does not prove 0 = 1” or “such and such
Turing machine halts” can be cast as statements in arithmetic.
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Arithmetization

(Taken with permission from Victoria Gitman’s lecture notes for Mathematical

Logic, Spring 2013.)
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Self-reference

The Gödel fixed-point lemma states that a form of self-reference is
possible for logical formulae.
(Formally: for any formula ϕ(x) there’s a sentence σ so that σ is PA-provably equivalent to ϕ(σ).)

You can now prove a form of the first incompleteness theorem by
considering σ PA-provably equivalent to “σ is not PA-provable”.

Suppose PA proves σ. Then PA proves that σ is not provable.
Whence PA does not prove σ. E

Suppose PA proves ¬σ. Then PA proves that σ is provable. Whence
PA does prove σ. E
(You need an additional lemma for those whences, one we will see on Slide 13. If you’ve heard of “ω-consistency”, this

is where it shows up.)

Some people say the incompleteness theorems are difficult to prove. But if
you handwave over the actual hard parts you can fit the proof on one slide.
:)
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Self-reference

Also have self-reference for computability theory, via the Kleene
recursion theorem. Informally, Turing machines can refer to
themselves.
(Formally: for any partial computable function F (x, y) there’s a TM p so that p computes the function y 7→ F (p, y).)

A fun application: programming languages admit quines—programs that
output their own source code.

;; Quine in Common Lisp

((lambda (x) (list x (list ’quote x)))

’(lambda (x) (list x (list ’quote x))))
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Incompleteness and Turing machines

The incompleteness theorems can be recast as saying that whether certain
Turing machines halt is undecidable.

A TM p:

Look at all length 1 proofs from
the first 1 axiom of PA.

Then look at all length 2 proofs
from the first 2 axioms of PA.
...

If at any point you see a proof
that ends with 0 = 1, halt and
output affirmatively.

Whether p halts is independent of
PA.

Adam Yedidia and Scott
Aaronson do even better.

They constructed a TM of size
7910 so that whether it halts is
independent of ZFC, but ZFC +
large cardinals does prove it
halts.
(Specifically an ineffable cardinal will do.)
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If you liked Gödel’s incompleteness theorems, you’ll love
his completeness theorem

Theorem (Gödel’s Completeness Theorem)

1 A set of axioms T is consistent if and only if there is a structure
satisfying T .

2 ϕ is true in every structure satisfying T if and only if ϕ is a theorem
of T .

(This is for axioms in first-order logic.)

This lets us translate talk about proofs, consistency, etc. to talk
about structures.

The incompleteness theorems plus the completeness theorem together
imply there must be non-isomorphic structures satisfying the axioms
of arithmetic.

What could these even look like???
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Nonstandard models of arithmetic

A model of (Peano) arithmetic is a discretely ordered semiring whose
definable subsets are inductive.

M

0 1 2 3 · · ·

)

N

e

e ± Z

2e

2e ± Z

⌊
e
2

⌋
⌊
e
2

⌋
± Z

⌊
3e
2

⌋⌊
3e
4

⌋
a dense linear order of Z-blocks

X ⊆ M is definable if you can express x ∈ X just by quantifying over
the elements of M and using the semiring operations and order of M.

X ⊆ M is inductive if 0 ∈ X and a ∈ X ⇒ a + 1 ∈ X implies X = M.
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M has a least element 0M (= the additive identity for M) because the set
{x ∈ M : x ≥ 0M} satisfies the inductive hypotheses.
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N embeds as an initial segment on any model of arithmetic.

K. Williams (U. Hawai‘i @ Mānoa) The universal algorithm ALPS, VCU (2020 Oct 30) 10 / 32



Nonstandard models of arithmetic

A model of (Peano) arithmetic is a discretely ordered semiring whose
definable subsets are inductive.

M

0 1 2 3 · · ·

)

N

e

e ± Z

2e

2e ± Z

⌊
e
2

⌋
⌊
e
2

⌋
± Z

⌊
3e
2

⌋⌊
3e
4

⌋
a dense linear order of Z-blocks

If e ∈ M \ N then e > n for all n ∈ N.
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All non-zero elements have a predecessor because

{0} ∪ {a ∈ M : a has a predecessor}

satisfies the induction hypotheses.
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Facts about nonstandard models of arithmetic

First constructed by Thoralf Skolem. (Skolem used an ultrapower construction.)

There are many different nonisomorphic models of arithmetic of any
infinite cardinality. In particular, there are 2ℵ0 isomorphism classes for
countable models of arithmetic.

If M is countable, then its ordertype is exactly N + Z ·Q. (Because Q
is the unique countable dense linear order without endpoints.)

In particular, all countable nonstandard models of arithmetic are
order-isomorphic.

Open Question (Harvey Friedman): N has the property that if a
model of arithmetic is order-isomorphic to it then they are fully
isomorphic. Does any other model of arithmetic have this property?

(Stanley Tennenbaum) If M is nonstandard then neither the + nor ×
of M is a computable function.
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Turing machines in a nonstandard world

M)

N

p

p2 + 2 = 4q

s

p0 = 1q

t

Consider p the TM which enumerates the theorems of arithmetic.

s is a computation log witnessing that p outputs p2 + 2 = 4q.
(s is a number coding the sequence of computation steps. Checking that s has this property only requires looking in N.)

If we run p in N, then we never output p0 = 1q.

But what if we run p in nonstandard M which thinks arithmetic is
inconsistent?

Then there is a computation log t witnessing that p outputs p0 = 1q.
But t must be nonstandard! In other words, we had to run p for a
nonstandard number of steps to output p0 = 1q.

The point: By moving to a larger world we made p output more
numbers.
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K. Williams (U. Hawai‘i @ Mānoa) The universal algorithm ALPS, VCU (2020 Oct 30) 12 / 32



Turing machines in a nonstandard world

M)

N
p

p2 + 2 = 4q

s

p0 = 1q

t

Consider p the TM which enumerates the theorems of arithmetic.

s is a computation log witnessing that p outputs p2 + 2 = 4q.
(s is a number coding the sequence of computation steps. Checking that s has this property only requires looking in N.)

If we run p in N, then we never output p0 = 1q.

But what if we run p in nonstandard M which thinks arithmetic is
inconsistent?

Then there is a computation log t witnessing that p outputs p0 = 1q.
But t must be nonstandard! In other words, we had to run p for a
nonstandard number of steps to output p0 = 1q.

The point: By moving to a larger world we made p output more
numbers.
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The absoluteness of computability

In summary:

The statement “the TM p outputs n for some input” is upward
absolute—if it’s true it stays true if we end-extend to a larger model.
(Logicians call this sort of statement a Σ1 statement. By the MRDP theorem, these are the statements equivalent to

one whose only quantifiers are a block of ∃s.)

By Gödel’s completeness theorem plus the last slide, Peano arithmetic
proves every true (i.e. in N) statement of this form.

But the statement “the TM p does not output n for some input” is
not upward absolute. (It is downward absolute though.)
(Logicians call this sort of statement a Π1 statement.)

Both the first and second incompleteness theorems are about
statements of this form.

K. Williams (U. Hawai‘i @ Mānoa) The universal algorithm ALPS, VCU (2020 Oct 30) 13 / 32



The absoluteness of computability

In summary:

The statement “the TM p outputs n for some input” is upward
absolute—if it’s true it stays true if we end-extend to a larger model.
(Logicians call this sort of statement a Σ1 statement. By the MRDP theorem, these are the statements equivalent to

one whose only quantifiers are a block of ∃s.)
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Woodin’s universal algorithm

We’ve seen that the behavior of a
Turing machine can be undecidable.

Proof theoretic: It may be
independent of PA how p
behaves.

Model theoretic: Running p in
different nonstandard models of
arithmetic may produce different
behavior.

I want to talk about a striking case
of the undecidability of how Turing
machines behave, due to W. Hugh
Woodin, where p can output
anything at all if run in the right
universe!
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Woodin’s universal algorithm, first form

Theorem (Woodin)

There is a Turing machine p with the following properties.

1 p provably enumerates a finite sequence.

2 Running p inside N never produces any output, i.e. it enumerates the
empty sequence.

3 But, for any finite sequence s of natural numbers there is a
nonstandard model of arithmetic M so that running p in M
enumerates exactly s.
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Woodin’s algorithm
(This construction for Woodin’s theorem is due to Joel David Hamkins.)

The Turing machine p:

p searches through the proofs of Peano arithmetic, looking at the
theorems they prove.

p is looking for a theorem of the form “p does not enumerate the
sequence s”, for s some nonempty finite sequence of numbers.
(p can refer to itself by the Kleene Recursion theorem.)

If p ever sees this, then p outputs the sequence s.

Claim: Run in N, p outputs the empty sequence.

Otherwise p outputs some s. So Peano arithmetic proves this true Σ1

statement. But by the definition of p, this also means that Peano
arithmetic proves that p does not output s. This would mean that Peano
arithmetic is inconsistent. But it’s not.
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Checking the extension property

Definition (The Turing machine p)

p searches through the proofs of Peano arithmetic, looking for a
theorem of the form “p does not enumerate the sequence s”, for s
some nonempty sequence of numbers.

If p ever sees this, then p outputs the sequence s.

Fix a finite sequence of natural numbers s. We want to find a nonstandard
model of arithmetic M in which running p outputs s.

Claim: Peano arithmetic + “p outputs s” is consistent.

Otherwise “p does not output s” is a theorem of Peano arithmetic. But
then running p in N would output a nonempty sequence. We just saw that
is not the case.

So by Gödel’s completeness theorem we can find a model of arithmetic in
which p outputs s.
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Woodin’s universal algorithm, general form

Theorem (Woodin)

Let PA+ be a computably axiomatizable extension
of PA. There is a Turing machine p with the
following properties.

1 p provably enumerates a finite sequence.

2 Running p inside N never produces any output,
i.e. it enumerates the empty sequence.

3 Suppose M is a model of PA+ in which p
enumerates s and that s∗ is a sequence in M
which extends s. Then we can end-extend M
to M∗, a larger model of PA+ in which p
enumerates s∗.

M

M∗

s

s∗

Proof idea: Do a similar argument, but internally to M. Need some more
technical lemmata to check that the argument can be arithmetized.
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Potentialist systems

The general form of Woodin’s theorem isn’t about a single mathematical
structure, but rather a collection of structures ordered by end-extension.

Let’s look at this in more generality.

Definition

A potentialist system is a collection M of structures M in a fixed
signature, ordered by a reflexive, transitive relation ⊆ which extends the
substructure relation.

So named because they formalize concepts that are never fully completed,
but there is always the potential to extend.
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Aristotle’s potential infinite

Aristotle distinguished between the actual infinite—a completed infinite
whole—versus the potential infinite—a process which always has the
potential to be extended.

Formalizing:

The actualist view: study the structure (N,+, ·, <).

The potentialist view: study the structures Nk = {0, 1, . . . , k},
ordered by extension.

(Linnebo and Shapiro, Mirroring Theorem) You can translate statements
about one perspective to the other. (The mirroring theorem applies in a more general context.)

Example: How to express the falsity of the Goldbach conjecture.

Actualist: there’s an even number which isn’t the sum of two primes.

Potentialist: we can extend to a larger world in which there’s an even
number which isn’t the sum of two primes.

For the potentialist we need to expand our logical tools to allow us to talk
about what happens in extensions.
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Potentialism and modal logic

Introduce two new logical operators:

ϕ, “ϕ is necessary”, says that ϕ holds in every extension.

ϕ, “ϕ is possible”, says that ϕ holds in some extension.

Every potentialist system satisfies:

ϕ⇒ ϕ (because ⊆ is reflexive)

ϕ⇒ ϕ (because ⊆ is transitive)

These two formulae, plus the following two—also true in any potentialist
system—axiomatize the modal theory S4.

(ϕ⇒ ψ)⇒ ( ϕ⇒ ψ)

¬ ϕ⇔ ¬ϕ
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The modal logic of a potentialist system

A question to ask about any potentialist system: which modal assertions
are valid?

(Forcing potentialism) Look at the forcing extensions of a model of
set theory. Has modal validities precisely S4.2.

ϕ⇒ ϕ (.2)

(Aristotlean potentialism) Look at worlds Nk . Has modal validities
precisely S4.3.

( ϕ ∧ ψ)⇒ [(ϕ ∧ ψ) ∨ ( ϕ ∧ ψ)] (.3)
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The modal logic of a potentialist system

The modal validities of a potentialist system express something about the
structure of its truths.

S4.2 expresses directedness.

S4.3 expresses linearity.

Just S4 expresses essential branching.

Note that this can be distinct from the properties of the underlying partial
order.

Forcing potentialism has S4.2 as its modal validities.

But as a partially ordered set, it’s not directed.

(Mostowski) If V is a countable model of ZF then there are Cohen
reals c and d generic over V so that V [c] and V [d ] cannot be
amalgamated into a common extension.
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Arithmetic potentialism

Theorem (Hamkins)

Consider the potentialist system consisting of models of arithmetic,
ordered by end-extension. The modal validities for this potentialist system
are precisely S4.
(For the general case you need to allow a parameter in formulae, for the length of the sequence output by the universal

algorithm.)

We already saw that S4 is a lower bound, so all that remains is to check it
is an upper bound.

The intuition: You get incompatible branching via statements like “the nth
number output by the universal algorithm is 7”. Combine this with some
facts about modal logic and you can show that any assertion not in S4 is
invalid.
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Coda: universal finite algorithms for set theory

Can we extend this analysis to the transfinite?

Yes.
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Models of set theory

A universe of sets is built up by
iterating the powerset operation,
starting from the empty set.

Every set has an ordinal rank—how
many times you must iterate P to reach
the set.

Unlike with arithmetic, there’s more
than one well-founded universe of sets.
E.g. if κ is an inaccessible cardinal then
the sets of rank < κ form a model of
ZF.

You can also get new universes by
changing the width, going thinner to an
inner model or wider via Cohen’s
method of forcing.

Vκ

Vλ
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Extensions of models of set theory

Unlike with arithmetic where there’s only one sensible notion of adding
new elements to the end, in set theory we have multiple notions.

M∗ end-extends M if M∗ doesn’t add any new elements to sets from
M. (For example, a forcing extension is an end-extension.)

M∗ rank-extends M if the new sets in M∗ have higher rank than all
elements in M.

Note that every rank-extension is an end-extension but not vice versa.

M

M∗

rank-extension

M

M∗

end-extension
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The Σ2 universal finite sequence for rank-extensions

There is a universal “algorithm” for rank-extensions.

Theorem (Hamkins–Woodin)

Let ZF+ be any computably axiomatizable extension of ZF. There is a Σ2

definition for a finite sequence s with the following properties:

1 ZF proves s is a finite sequence.

2 If M is a well-founded model of ZF+ then its s is the empty sequence.

3 If M is a countable model of ZF+ with s as its sequence and s∗ is any
finite sequence in M extending s then there is a rank-extension
M∗ |= ZF+ of M whose sequence is s∗.

(Σ2 assertions are precisely those that are upward absolute for rank-extensions.)
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The Σ1 universal finite sequence for end-extensions

There is also a universal “algorithm” for end-extensions.

Theorem (Hamkins–W.)

Let ZF+ be any computably axiomatizable extension of ZF. There is a Σ1

definition for a finite sequence s with the following properties:

1 ZF proves s is a finite sequence.

2 If M is a well-founded model of ZF+ then its s is the empty sequence.

3 If M is a countable model of ZF+ with s as its sequence and s∗ is any
finite sequence in M extending s then there is a end-extension
M∗ |= ZF+ of M whose sequence is s∗.

4 For (3), it is enough that M be a model of ZF and M have an inner
model of ZF+.

(Σ1 assertions are precisely those that are upward absolute for end-extensions.)
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Set theoretic potentialism

Corollary (Hamkins–Woodin, Hamkins–W.)

The modal validities for both rank-extension potentialism and
end-extension potentialism are precisely S4.

Same proof as before works.
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Resurrection in end-extensions

If you forget the stuff about universal algorithms, the end-extension result
says that you can resurrect properties of inner models in end-extensions.

Theorem (Hamkins–W.)

Let ZF+ and ZF† be computably axiomatizable extensions of ZF. Let M
be a countable model of ZF+ with an inner model of ZF†. Then there is a
model of ZF† which end-extends M.

Corollary

(Barwise Extension Theorem) Every countable model of ZF
end-extends to a model of ZF + V = L.

Every countable model of ZFC + “there is a measurable cardinal”
end-extends to a model of ZFC + V = L[µ].

Every countable model of ZFC + “there are infinitely many Woodin
cardinals with a measurable above” end-extends to a model of
ZF + V = L(R) + AD.
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Thank you!

K. Williams (U. Hawai‘i @ Mānoa) The universal algorithm ALPS, VCU (2020 Oct 30) 32 / 32


