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Set-theoretic multiverses

Set theorists have studied many different multiverses.

The generic multiverse of a model of set theory.

Set-theoretic geology takes a downward look at this multiverse.

S. Friedman’s hyperverse of countable transitive models.

Zermelo’s upwardly dynamic conception of set can be seen as a
multiverse with worlds Vκ for inaccessible κ.

Some perspectives: Order-theoretic (Mostowski), modal logic (Hamkins
and others), philosophy of math (Friedman, Woodin, and others).

One perspective: The axiomatic approach. Write down axioms which a
multiverse can satisfy.

Philosophy: What axioms are true of the real multiverse of sets?

Mathematics: Given a toy multiverse—a collection of set-sized
models of set theory—what axioms are true of it?
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Multiverse axioms

Hamkins introduced a series of axioms which describe his view of what the
set-theoretic multiverse looks like.

Realizability If M is a world and N is a set- or class-sized model of
ZFC in M, then N is a world.

Closure Under Forcing If M is a world and P is a poset in M then
the multiverse contains a forcing extension of M by P.

Countability Every world M is an element of a larger world which
thinks M is countable.

Remark

Under suitable consistency assumptions: The collection of countable
transitive models of ZFC form a multiverse satisfying Standard
Realizability, Closure Under Forcing, and Countability; and
The collection of countable models of ZFC form a multiverse satisfying
Realizability, Closure Under Forcing, and Countability.
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The well-foundedness mirage axiom

The most provocative of Hamkins’s multiverse axioms is his
well-foundedness mirage axiom.

Well-Foundedness Mirage If M is a world there is another world N
with M ∈ N and N |= M is ω-nonstandard. That is, N sees an
embedding of ωM onto a strict initial segment of ωN .

WFM has profound consequences for the structure of the multiverse, more
so than Hamkins’s other axioms. It forces every world to be
ω-nonstandard, and more.
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Recursive saturation

Definition

A structure is recursively saturated if it realizes every finitely consistent
computable type.

Recursive saturation is an important concept in the model theory of
nonstandard models.

Every theory with an infinite model has a countable recursively
saturated model.

Every recursively saturated model of set theory is ω-nonstandard.

The definable ordinals in a recursively saturated model of set theory
are bounded.

Every model of set theory living inside an ω-nonstandard model of set
theory is recursively saturated.

Thus, if a toy multiverse satisfies Hamkins’s WFM axiom then every world
in the multiverse must be recursively saturated.
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A natural model of the Hamkins multiverse axioms

Theorem (Gitman–Hamkins (2010))

The collection of countable, recursively saturated models of set theory
form a multiverse satisfying Realizability, Closure Under Forcing,
Countability, and Well-Foundedness Mirage.
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The main question

Question

Can the Well-Foundedness Mirage axiom be weakened to allow for
multiverses with worlds which are not recursively saturated?

Yes.

Gitman, Godziszewsky, Meadows, and I consider two possible weakenings.
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Avoiding recursive saturation

There are some easy ways to ensure a model of set theory is not
recursively saturated.

No ω-standard model is recursively saturated.

No Paris model, one whose ordinals are all definable without
parameters, is recursively saturated.

Can weaken being a Paris model to having cofinally many ordinals
definable without parameters.

Can weaken even further to allowing a fixed parameter in the
definitions.

Theorem (Paris (1973))

Every consistent extension of ZF has a Paris model.
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K Williams (U. Hawai‘i @ Mānoa) On axioms for multiverses RIMS (2019 Nov 18) 8 / 20



Avoiding recursive saturation

There are some easy ways to ensure a model of set theory is not
recursively saturated.

No ω-standard model is recursively saturated.

No Paris model, one whose ordinals are all definable without
parameters, is recursively saturated.

Can weaken being a Paris model to having cofinally many ordinals
definable without parameters.

Can weaken even further to allowing a fixed parameter in the
definitions.

Theorem (Paris (1973))

Every consistent extension of ZF has a Paris model.
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The first weakening of the WFM axiom
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The weak well-foundedness mirage axiom

Weak Well-Foundedness Mirage If M is a world there is another
world N with M ∈ N and N |= M is nonstandard (but possibly
ω-standard).
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A natural model of the weak WFM axiom

Lα is the Shepherdson–Cohen minimal transitive model of ZFC.

Theorem (Gitman, Godziszewsky, Meadows, W.)

The collection of models of set theory which Lα thinks are countable form
a multiverse satisfying Realizability, Closure Under Forcing, Countability,
and Weak Well-Foundedness Mirage.

This multiverse contains many worlds which are not recursively saturated,
e.g. ω-standard models and Paris models.

Theorem (Gitman, Godziszewsky, Meadows, W.)

The collection of ω-standard models of set theory which Lα thinks are
countable form a multiverse satisfying Standard Realizability, Closure
Under Forcing, Countability, and Weak Well-Foundedness Mirage.

No world in this multiverse is recursively saturated.
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The second weakening of the WFM axiom

(Need some set-up first.)
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Covering extensions

N ⊇ M is an end-extension if b ∈N a ∈ M implies b ∈ M.

An end-extension N ⊇ M is covering if there exists m ∈ N so that
a ∈N m for all a ∈ M.

N ⊇ M is a rank-extension if b ∈ N \M implies rankN b > α for all
α ∈ OrdM .

Observe that every rank-extension is a covering end-extension and every
elementary end-extension is a rank-extension.

Theorem (Keisler–Morley (1968))

Every countable model of ZFC has an elementary end-extension.
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The covering multiverse axioms

Covering Well-Foundedness Mirage If M is a world then there is a
world N with (k ,∈k) ∈ N so that k is a covering end-extension of M
and N |= k is ω-nonstandard.

Covering Countability If M is a world then there is a world N with
(k,∈k) ∈ N so that k is a covering end-extension of M and N |= k is
countable.
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Building a covering axiom multiverse. Step 1: The trellis

M = M0
0 is a countable and

ω-nonstandard Paris model,
U = U0 ∈ M is an ultrafilter
on ωM .

Vertical arrows are elementary
end-extensions. We can ensure
cofinally many ordinals are de-
finable from a fixed parameter.

Horizontal arrows are
ultrapowers, iterating
the ultrapower of U0

along ωM .

Each world in the trellis
is ω-nonstandard but not
recursively saturated.
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Z ⊆ ωM , a Z-block

trellis
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Step 2: Grow the multiverse C(M) on the trellis

First, add in enough forcing extensions.

More precisely: For each e ∈ Z , for each Ord-cc forcing P ⊆ Mω
e , for

each G ⊆ P generic over Mω
e , for each n ∈ ω: place Mn

e [G ∩Mn
e ] into

C(M).

Finally, close under set-like realizability.

More precisely: For each Mn
e [G ∩Mn

e ], if N is a definable over this
world model of ZFC so that Mn

e [G ∩Mn
e ] thinks N is set-like, then

place N into C(M).

(Need to restrict to Ord-cc forcings and set-like models to make later
arguments work. Use Ord-cc-ness to get that G ∩Mn

e is generic over Mn
e .

And use the restriction to set-like models to get covering extensions by
moving up the trellis.)
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Our main theorem

M is a countable, ω-nonstandard Paris model,
C(M) is the covering multiverse grown from M.

Theorem (Gitman, Godziszewsky, Meadows, W.)

C(M) is a multiverse satisfying Set-Like Realizability, Closure Under Ord-cc
Forcing, Covering Countability, and Covering Well-Foundedness Mirage.

Every world in C(M) which is a set-forcing extension of a world in the
trellis is not recursively saturated.
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A partial sketch of the proof

(Worlds in the trellis have Ord-cc forcing extensions)
Take Mn

e and P ⊆ Mn
e an Ord-cc forcing. Let P+ ⊆ Mω

e be the forcing
defined by the same formula. Then if G ⊆ P+ is generic over Mω

e then G
meets every antichain, each of which is a set in Mω

e by Ord-cc-ness. So G
meets every antichain in Mn

e , so G ∩Mn
e is generic over Mn

e . So C(M)
contains a forcing extension of Mn

e by P.

(Covering Countability for worlds in the trellis)
Take Mn

e and look at a forcing extension of Mn+1
e which collapses Vα to

be countable where α is above Mn
e . Then (k ,∈k) = (Vα,∈) ∈ Mn+1

e [G ]
witnesses Covering Countability for Mn

e .

(Covering WFM for worlds in the trellis)
Take Mn

e , with Mn+1
e as an elementary end-extension. But Mn+1

e is a
definable, set-like class in Mn+1

e−1 , which sees that Mn+1
e is ω-nonstandard.

Cut off Mn+1
e at an ordinal above Mn

e to get (k,∈k) ∈ Mn+1
e−1 witnessing

Covering WFM for Mn
e .
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Open questions

Question

Can we get a multiverse for the covering axioms which satisfies Closure
Under (Tame) Class Forcing and full Realizability? That is, can we drop
the restrictions to Closure Under Ord-cc Forcing and Set-Like
Realizability?

Question

Is there a natural model of the covering multiverse axioms?
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Thank you!
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