On axioms for multiverses of set theory

Kameryn J Williams

University of Hawai'i at Mānoa

RIMS Set Theory Workshop 2019 2019 November 18

Joint work with Victoria Gitman, Michał Tomasz Godziszewsky, and Toby Meadows

K Williams (U. Hawai'i @ Mānoa)

On axioms for multiverses

RIMS (2019 Nov 18) 1 / 20

Set-theoretic multiverses

Set theorists have studied many different multiverses.

- The generic multiverse of a model of set theory.
- S. Friedman's hyperverse of countable transitive models.
- Zermelo's upwardly dynamic conception of set can be seen as a multiverse with worlds V_{κ} for inaccessible κ .

Set-theoretic multiverses

Set theorists have studied many different multiverses.

- The generic multiverse of a model of set theory.
 - Set-theoretic geology takes a downward look at this multiverse.
- S. Friedman's hyperverse of countable transitive models.
- Zermelo's upwardly dynamic conception of set can be seen as a multiverse with worlds V_{κ} for inaccessible κ .

Some perspectives: Order-theoretic (Mostowski), modal logic (Hamkins and others), philosophy of math (Friedman, Woodin, and others).

Set-theoretic multiverses

Set theorists have studied many different multiverses.

- The generic multiverse of a model of set theory.
 - Set-theoretic geology takes a downward look at this multiverse.
- S. Friedman's hyperverse of countable transitive models.
- Zermelo's upwardly dynamic conception of set can be seen as a multiverse with worlds V_{κ} for inaccessible κ .

Some perspectives: Order-theoretic (Mostowski), modal logic (Hamkins and others), philosophy of math (Friedman, Woodin, and others).

One perspective: The axiomatic approach. Write down axioms which a multiverse can satisfy.

- Philosophy: What axioms are true of the real multiverse of sets?
- Mathematics: Given a toy multiverse—a collection of set-sized models of set theory—what axioms are true of it?

K Williams (U. Hawai'i @ Mānoa)

On axioms for multiverses

Multiverse axioms

Hamkins introduced a series of axioms which describe his view of what the set-theoretic multiverse looks like.

- **Realizability** If M is a world and N is a set- or class-sized model of ZFC in M, then N is a world.
- Closure Under Forcing If M is a world and \mathbb{P} is a poset in M then the multiverse contains a forcing extension of M by \mathbb{P} .
- **Countability** Every world *M* is an element of a larger world which thinks M is countable.

Remark

Under suitable consistency assumptions: The collection of countable transitive models of ZFC form a multiverse satisfying Standard Realizability, Closure Under Forcing, and Countability; and The collection of countable models of ZFC form a multiverse satisfying Realizability, Closure Under Forcing, and Countability.

3

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The most provocative of Hamkins's multiverse axioms is his well-foundedness mirage axiom.

Well-Foundedness Mirage If M is a world there is another world N with M ∈ N and N ⊨ M is ω-nonstandard. That is, N sees an embedding of ω^M onto a strict initial segment of ω^N.

WFM has profound consequences for the structure of the multiverse, more so than Hamkins's other axioms. It forces every world to be ω -nonstandard, and more.

Definition

A structure is recursively saturated if it realizes every finitely consistent computable type.

Recursive saturation is an important concept in the model theory of nonstandard models.

- Every theory with an infinite model has a countable recursively saturated model.
- Every recursively saturated model of set theory is ω -nonstandard.
- The definable ordinals in a recursively saturated model of set theory are bounded.
- Every model of set theory living inside an ω -nonstandard model of set theory is recursively saturated.

Thus, if a toy multiverse satisfies Hamkins's WFM axiom then every world in the multiverse must be recursively saturated.

K Williams (U. Hawai'i @ Mānoa)

On axioms for multiverses

Theorem (Gitman–Hamkins (2010))

The collection of countable, recursively saturated models of set theory form a multiverse satisfying Realizability, Closure Under Forcing, Countability, and Well-Foundedness Mirage.

Question

Can the Well-Foundedness Mirage axiom be weakened to allow for multiverses with worlds which are not recursively saturated?

3

- ∢ ⊒ ▶

Image: Image:

Question

Can the Well-Foundedness Mirage axiom be weakened to allow for multiverses with worlds which are not recursively saturated?

Yes.

Gitman, Godziszewsky, Meadows, and I consider two possible weakenings.

K Williams (U. Hawai'i @ Mānoa)

On axioms for multiverses

RIMS (2019 Nov 18) 7 / 20

프 에 에 프 어

- No ω -standard model is recursively saturated.
- No Paris model, one whose ordinals are all definable without parameters, is recursively saturated.

- No ω -standard model is recursively saturated.
- No Paris model, one whose ordinals are all definable without parameters, is recursively saturated.

Theorem (Paris (1973))

Every consistent extension of ZF has a Paris model.

K Williams (U. Hawai'i @ Mānoa)

- No ω -standard model is recursively saturated.
- No Paris model, one whose ordinals are all definable without parameters, is recursively saturated.
- Can weaken being a Paris model to having cofinally many ordinals definable without parameters.

Theorem (Paris (1973))

Every consistent extension of ZF has a Paris model.

- No ω -standard model is recursively saturated.
- No Paris model, one whose ordinals are all definable without parameters, is recursively saturated.
- Can weaken being a Paris model to having cofinally many ordinals definable without parameters.
- Can weaken even further to allowing a fixed parameter in the definitions.

Theorem (Paris (1973))

Every consistent extension of ZF has a Paris model.

E + 4 E +

The first weakening of the WFM axiom

Э

• Weak Well-Foundedness Mirage If M is a world there is another world N with $M \in N$ and $N \models M$ is nonstandard (but possibly ω -standard).

3

A B + A B +

A natural model of the weak WFM axiom

 L_{α} is the Shepherdson–Cohen minimal transitive model of ZFC.

Theorem (Gitman, Godziszewsky, Meadows, W.)

The collection of models of set theory which L_{α} thinks are countable form a multiverse satisfying Realizability, Closure Under Forcing, Countability, and Weak Well-Foundedness Mirage.

This multiverse contains many worlds which are not recursively saturated, e.g. ω -standard models and Paris models.

A natural model of the weak WFM axiom

 L_{α} is the Shepherdson–Cohen minimal transitive model of ZFC.

Theorem (Gitman, Godziszewsky, Meadows, W.)

The collection of models of set theory which L_{α} thinks are countable form a multiverse satisfying Realizability, Closure Under Forcing, Countability, and Weak Well-Foundedness Mirage.

This multiverse contains many worlds which are not recursively saturated, e.g. ω -standard models and Paris models.

Theorem (Gitman, Godziszewsky, Meadows, W.)

The collection of ω -standard models of set theory which L_{α} thinks are countable form a multiverse satisfying Standard Realizability, Closure Under Forcing, Countability, and Weak Well-Foundedness Mirage.

No world in this multiverse is recursively saturated.

K Williams (U. Hawai'i @ Mānoa)

On axioms for multiverses

イロト イロト イヨト 一日

The second weakening of the WFM axiom

The second weakening of the WFM axiom (Need some set-up first.)

3

프 에 에 프 어

Image: Image:

- $N \supseteq M$ is an end-extension if $b \in {}^{N} a \in M$ implies $b \in M$.
- An end-extension $N \supseteq M$ is covering if there exists $m \in N$ so that $a \in {}^N m$ for all $a \in M$.
- $N \supseteq M$ is a rank-extension if $b \in N \setminus M$ implies rank^N $b > \alpha$ for all $\alpha \in \text{Ord}^M$.

Observe that every rank-extension is a covering end-extension and every elementary end-extension is a rank-extension.

Theorem (Keisler–Morley (1968))

Every countable model of ZFC has an elementary end-extension.

- Covering Well-Foundedness Mirage If M is a world then there is a world N with (k, ∈^k) ∈ N so that k is a covering end-extension of M and N ⊨ k is ω-nonstandard.
- Covering Countability If M is a world then there is a world N with $(k, \in^k) \in N$ so that k is a covering end-extension of M and $N \models k$ is countable.

Building a covering axiom multiverse. Step 1: The trellis

 $M = M_0^0$ is a countable and ω -nonstandard Paris model, $U = U_0 \in M$ is an ultrafilter on ω^M .

Vertical arrows are elementary end-extensions. We can ensure cofinally many ordinals are definable from a fixed parameter.

Horizontal arrows are ultrapowers, iterating the ultrapower of U_0 along ω^M .

Each world in the trellis is ω -nonstandard but not recursively saturated.

Step 2: Grow the multiverse $\mathcal{C}(M)$ on the trellis

- First, add in enough forcing extensions.
 - More precisely: For each e ∈ Z, for each Ord-cc forcing P ⊆ M_e^ω, for each G ⊆ P generic over M_e^ω, for each n ∈ ω: place M_eⁿ[G ∩ M_eⁿ] into C(M).

• First, add in enough forcing extensions.

- More precisely: For each e ∈ Z, for each Ord-cc forcing P ⊆ M_e^ω, for each G ⊆ P generic over M_e^ω, for each n ∈ ω: place M_eⁿ[G ∩ M_eⁿ] into C(M).
- Finally, close under set-like realizability.
 - More precisely: For each $M_e^n[G \cap M_e^n]$, if N is a definable over this world model of ZFC so that $M_e^n[G \cap M_e^n]$ thinks N is set-like, then place N into $\mathcal{C}(M)$.

- ロ ト - 4 同 ト - 4 回 ト - - - 回

• First, add in enough forcing extensions.

- More precisely: For each e ∈ Z, for each Ord-cc forcing P ⊆ M_e^ω, for each G ⊆ P generic over M_e^ω, for each n ∈ ω: place M_eⁿ[G ∩ M_eⁿ] into C(M).
- Finally, close under set-like realizability.
 - More precisely: For each $M_e^n[G \cap M_e^n]$, if N is a definable over this world model of ZFC so that $M_e^n[G \cap M_e^n]$ thinks N is set-like, then place N into $\mathcal{C}(M)$.

(Need to restrict to Ord-cc forcings and set-like models to make later arguments work. Use Ord-cc-ness to get that $G \cap M_e^n$ is generic over M_e^n . And use the restriction to set-like models to get covering extensions by moving up the trellis.)

M is a countable, ω -nonstandard Paris model, C(M) is the covering multiverse grown from *M*.

Theorem (Gitman, Godziszewsky, Meadows, W.)

C(M) is a multiverse satisfying Set-Like Realizability, Closure Under Ord-cc Forcing, Covering Countability, and Covering Well-Foundedness Mirage.

Every world in C(M) which is a set-forcing extension of a world in the trellis is not recursively saturated.

A partial sketch of the proof

(Worlds in the trellis have Ord-cc forcing extensions)

Take M_e^n and $\mathbb{P} \subseteq M_e^n$ an Ord-cc forcing. Let $\mathbb{P}^+ \subseteq M_e^{\omega}$ be the forcing defined by the same formula. Then if $G \subseteq \mathbb{P}^+$ is generic over M_e^{ω} then G meets every antichain, each of which is a set in M_e^{ω} by Ord-cc-ness. So G meets every antichain in M_e^n , so $G \cap M_e^n$ is generic over M_e^n . So $\mathcal{C}(M)$ contains a forcing extension of M_e^n by \mathbb{P} .

A partial sketch of the proof

(Worlds in the trellis have Ord-cc forcing extensions)

Take M_e^n and $\mathbb{P} \subseteq M_e^n$ an Ord-cc forcing. Let $\mathbb{P}^+ \subseteq M_e^{\omega}$ be the forcing defined by the same formula. Then if $G \subseteq \mathbb{P}^+$ is generic over M_e^{ω} then G meets every antichain, each of which is a set in M_e^{ω} by Ord-cc-ness. So G meets every antichain in M_e^n , so $G \cap M_e^n$ is generic over M_e^n . So $\mathcal{C}(M)$ contains a forcing extension of M_e^n by \mathbb{P} .

(Covering Countability for worlds in the trellis)

Take M_e^n and look at a forcing extension of M_e^{n+1} which collapses V_α to be countable where α is above M_e^n . Then $(k, \in^k) = (V_\alpha, \in) \in M_e^{n+1}[G]$ witnesses Covering Countability for M_e^n .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

A partial sketch of the proof

(Worlds in the trellis have $\operatorname{Ord}\operatorname{\mathsf{-cc}}$ forcing extensions)

Take M_e^n and $\mathbb{P} \subseteq M_e^n$ an Ord-cc forcing. Let $\mathbb{P}^+ \subseteq M_e^{\omega}$ be the forcing defined by the same formula. Then if $G \subseteq \mathbb{P}^+$ is generic over M_e^{ω} then G meets every antichain, each of which is a set in M_e^{ω} by Ord-cc-ness. So G meets every antichain in M_e^n , so $G \cap M_e^n$ is generic over M_e^n . So $\mathcal{C}(M)$ contains a forcing extension of M_e^n by \mathbb{P} .

(Covering Countability for worlds in the trellis)

Take M_e^n and look at a forcing extension of M_e^{n+1} which collapses V_α to be countable where α is above M_e^n . Then $(k, \in^k) = (V_\alpha, \in) \in M_e^{n+1}[G]$ witnesses Covering Countability for M_e^n .

(Covering WFM for worlds in the trellis)

Take M_e^n , with M_e^{n+1} as an elementary end-extension. But M_e^{n+1} is a definable, set-like class in M_{e-1}^{n+1} , which sees that M_e^{n+1} is ω -nonstandard. Cut off M_e^{n+1} at an ordinal above M_e^n to get $(k, \in^k) \in M_{e-1}^{n+1}$ witnessing Covering WFM for M_e^n .

Question

Can we get a multiverse for the covering axioms which satisfies Closure Under (Tame) Class Forcing and full Realizability? That is, can we drop the restrictions to Closure Under Ord-cc Forcing and Set-Like Realizability?

Question

Is there a natural model of the covering multiverse axioms?

프 에 에 프 어

Thank you!

K Williams (U. Hawai'i @ Mānoa)

On axioms for multiverses

RIMS (2019 Nov 18) 20 / 20