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Potentialism as a general framework

Definition

A potentialist system (M,⊆) is a collection of worlds which are structures
in a common signature, ordered by a reflexive, transitive relation ⊆ which
refines the substructure relation.

Used to formalize the intuition of a dynamically growing domain.

For instance, Linnebo and Stewart used this framework to formalize
Aristotle’s notion of the potential infinite. In their potentialist system,
worlds are finite initial segments of ω, ordered by extension.

K Williams (U. Hawai‘i @ Mānoa) The Σ1 universal finite sequence 7ESTC (2019 July 4) 2 / 18



Potentialism as a general framework

Definition

A potentialist system (M,⊆) is a collection of worlds which are structures
in a common signature, ordered by a reflexive, transitive relation ⊆ which
refines the substructure relation.

Used to formalize the intuition of a dynamically growing domain.

For instance, Linnebo and Stewart used this framework to formalize
Aristotle’s notion of the potential infinite. In their potentialist system,
worlds are finite initial segments of ω, ordered by extension.

K Williams (U. Hawai‘i @ Mānoa) The Σ1 universal finite sequence 7ESTC (2019 July 4) 2 / 18



Potentialism in set theory

Potentialist perspectives have rich antecedents in set theory.

Zermeloian potentialism Worlds are Vκ for inaccessible κ.

The generic multiverse Worlds are forcing extensions of a fixed
universe of sets.

The hyperverse of countable transitive models Worlds are countable
transitive models.

K Williams (U. Hawai‘i @ Mānoa) The Σ1 universal finite sequence 7ESTC (2019 July 4) 3 / 18



Potentialism in set theory

Potentialist perspectives have rich antecedents in set theory.

Zermeloian potentialism Worlds are Vκ for inaccessible κ.

The generic multiverse Worlds are forcing extensions of a fixed
universe of sets.

The hyperverse of countable transitive models Worlds are countable
transitive models.
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K Williams (U. Hawai‘i @ Mānoa) The Σ1 universal finite sequence 7ESTC (2019 July 4) 3 / 18



Potentialism in set theory

Potentialist perspectives have rich antecedents in set theory.

Zermeloian potentialism Worlds are Vκ for inaccessible κ.

The generic multiverse Worlds are forcing extensions of a fixed
universe of sets.

The hyperverse of countable transitive models Worlds are countable
transitive models.
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A modal interpretation

(M,⊆) is a potentialist system.

ϕ is true at a world M if ϕ is true in some extension N ⊇ M.

ϕ is true at a world M if ϕ is true in every extension N ⊇ M.

The modal validities of M are the modal assertions which are true in every
world (under any interpretation of the propositional variables).

The theory S4 is always a lower bound for the modal validities.

(p ⇒ q)⇒ ( p ⇒ q)

¬ p ⇔ ¬p
p ⇒ p

p ⇒ p
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The modal logic of potentialism

Zermeloian potentialism has S4.3 as its modal validities.
(Hamkins–Linnebo)

The generic multiverse has S4.2 as its modal validities.
(Hamkins–Löwe)

The hyperverse of countable transitive models has S4.2 as its modal
validities. (Hamkins–Linnebo)

(.2) ϕ⇒ ϕ

(.3) ( ϕ ∧ ψ)⇒ ((ϕ ∧ ψ) ∨ ( ϕ ∧ ψ))
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Branching versus directed potentialism

Having S4.2 as modal validities expresses directedness of the modalities,
while failures of the .2 axiom express that there is incompatible branching.

ϕ⇒ ϕ

Directedness expresses a coherence to how we extend further and further,
while branching expresses a more radical potentialism in which we have to
make choices with permanent consequence.

Warning! Directedness/branching of the modalities is not the same thing
as directedness/branching of the order relation on the potentialist system.
The generic multiverse is not directed as a partial order (Mostowski), but
the modal validities for forcing potentialism are precisely S4.2
(Hamkins–Löwe).
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End-extensional potentialism

The potentialist system we consider: countable models of set theory,
ordered by end-extension.
Informally: N end-extends M if M ⊆ N and old sets have no new elements.
Formally: N end-extends M if M ⊆ N and a ∈N b ∈ M implies a ∈ M.

Examples:

Rank-extensions, e.g. Vα ⊆ Vβ

Forcing extensions V ⊆ V [G ]

And many more!

Theorem (Keisler–Morley)

Every countable model of ZF has an elementary end-extension, which is
necessarily also a rank-extension.

Observation

If N end-extends M and M |= ϕ(a) for a Σ1 formula ϕ, then N |= ϕ(a).
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The Σ1-definable universal finite sequence

Let ZF be a fixed computably enumerable extension of ZF.

Theorem (Hamkins–Welch–W.)

There is a Σ1 definition for a finite sequence

a0, . . . , an

with the following properties.

1 ZF proves the sequence is finite.

2 If M |= ZF is transitive then the sequence in M is the empty sequence.

3 If in countable M |= ZF the sequence is s and t ∈ M is any finite
extension of s, then there is N |= ZF an end-extension of M so that
the sequence in N is exactly t.

4 Indeed, in (3) it suffices that M |= ZF has an inner model W |= ZF.

K Williams (U. Hawai‘i @ Mānoa) The Σ1 universal finite sequence 7ESTC (2019 July 4) 8 / 18



The Σ1-definable universal finite sequence

Let ZF be a fixed computably enumerable extension of ZF.

Theorem (Hamkins–Welch–W.)

There is a Σ1 definition for a finite sequence

a0, . . . , an

with the following properties.

1 ZF proves the sequence is finite.

2 If M |= ZF is transitive then the sequence in M is the empty sequence.

3 If in countable M |= ZF the sequence is s and t ∈ M is any finite
extension of s, then there is N |= ZF an end-extension of M so that
the sequence in N is exactly t.

4 Indeed, in (3) it suffices that M |= ZF has an inner model W |= ZF.
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Process A—for ω-nonstandard models

a0, . . . , an is defined using auxiliary information k0 > · · · > kn finite
ordinals and m0 ∈ · · · ∈ mn countable transitive sets.
Stage n succeeds if all previous stages succeed, and

there are a, k < kn−1,
and m 3 mn−1 so that (m,∈) has no end-extension to a model N of ZFk

in which the process A sequence is exactly a0, . . . , an−1, a, defined using
the same auxiliary information.
If stage n succeeds, let (an, kn,mn) be the triple seen first in the L-order.

The apparent circularity of the definition is resolved by the Gödel–Carnap
fixed-point theorem. The definition is Σ1. The sequence is finite, because
the ki count down. Each ki must be nonstandard (by reflection).

To extend: if stage n fails in M then for any a ∈ M and nonstandard
k < kn−1 can find in M+[g ], a forcing extension of an elementary

end-extension of M, a model of ZFk , which end-extends m = Vθ
M+ ⊇ M

and whose process A sequence is a0, . . . , an−1, a.
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K Williams (U. Hawai‘i @ Mānoa) The Σ1 universal finite sequence 7ESTC (2019 July 4) 9 / 18



Process A—for ω-nonstandard models

a0, . . . , an is defined using auxiliary information k0 > · · · > kn finite
ordinals and m0 ∈ · · · ∈ mn countable transitive sets.
Stage n succeeds if all previous stages succeed, and there are a, k < kn−1,
and m 3 mn−1 so that (m,∈) has no end-extension to a model N of ZFk

in which the process A sequence is exactly a0, . . . , an−1, a, defined using
the same auxiliary information.

If stage n succeeds, let (an, kn,mn) be the triple seen first in the L-order.

The apparent circularity of the definition is resolved by the Gödel–Carnap
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Process B—for ω-standard models

a0, . . . , an is defined using auxiliary information λ0 > · · · > λn countable
ordinals and m0 ∈ · · · ∈ mn countable transitive sets.
Stage n succeeds if all previous stages succeed, and

there are a, λ < λn−1,
and m 3 mn−1 so that (m,∈) has no end-extension to a model N of ZF in
which the process B sequence is exactly a0, . . . , an−1, a, defined using the
same auxiliary information; and:
the tree canonically associated to the Π1

1 assertion “(m,∈) has no
end-extension blah blah” is well-founded and has rank λ.
If stage n succeeds, let (an, kn,mn) be the triple seen first in the L-order.

Similar to before: The apparent circularity of the definition is resolved by
the Gödel–Carnap fixed-point theorem. The definition is Σ1. The sequence
is finite, because the λi count down. Each λi must be nonstandard.

To extend: again find the desired end-extension of M in a forcing
extension of an elementary end-extension of M.
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Process C—for all models

You can combine processes A and B into a single process which has the
extension property for any countable model of ZF.
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The Barwise extension theorem

Theorem (Barwise)

Every countable model of ZF end-extends to a model of ZFC + V = L.

Our theorem gives a new proof of the Barwise extension theorem, which
does not go through the theory of admissible sets. (Either derive it as an
immediate corollary of (4) using ZF = ZFC + V = L, or you can give a
direct proof similar to our proof for the universal finite sequence.)
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Universal finite sequences in a general framework

(M,⊆) a potentialist system, worlds have sequences and integers.

Definition

M has a universal finite sequence if there is a definition for a sequence s
so that:

1 If M is a world in M then sM is a finite sequence.

2 If M ⊆ N are worlds in M then sM ⊆ sN .

3 If M is a world in M and t ∈ M is any finite sequence extending sM ,
then there is N ⊇ M in M so that sN = t.

End-extensional potentialism admits a universal finite sequence.

Corollary: So do ∆0-elementary potentialism and L-extensional
potentialism.

As does rank-extensional potentialism. (Hamkins–Woodin)

Woodin’s universal algorithm gives a universal finite sequence for
arithmetic potentialism.
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A universal finite sequence implies branching potentialism

Theorem (Hamkins)

If a potentialist system admits a universal finite sequence, then its modal
validities are precisely S4. So it has branching modalities.
(If worlds may be ω-nonstandard, then you need a single parameter, for
the length of the sequence. If all worlds are ω-standard, then this holds
without admitting parameters.)

S4 is always a lower bound. To get that it also an upper bound uses that
the class of finite pre-trees is complete for S4. That is, if a modal assertion
ϕ is not in S4 then there is a finite pre-tree which invalidates ϕ.

So to prove the theorem we have to see how to use a universal finite
sequence to label pre-trees with formulae so that the order-relation on the
pre-tree agrees with possibility among the formulae.

K Williams (U. Hawai‘i @ Mānoa) The Σ1 universal finite sequence 7ESTC (2019 July 4) 14 / 18



A universal finite sequence implies branching potentialism

Theorem (Hamkins)

If a potentialist system admits a universal finite sequence, then its modal
validities are precisely S4. So it has branching modalities.
(If worlds may be ω-nonstandard, then you need a single parameter, for
the length of the sequence. If all worlds are ω-standard, then this holds
without admitting parameters.)

S4 is always a lower bound. To get that it also an upper bound uses that
the class of finite pre-trees is complete for S4. That is, if a modal assertion
ϕ is not in S4 then there is a finite pre-tree which invalidates ϕ.

So to prove the theorem we have to see how to use a universal finite
sequence to label pre-trees with formulae so that the order-relation on the
pre-tree agrees with possibility among the formulae.
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The universal finite sequence and labeling pre-trees

Look at what gets added to the end of the universal finite sequence:

Step 1: the subsequence 〈ei 〉 of
even numbers tell you how to
descend the tree to determine
your cluster. If B is the branch-
ing of the current node, then ei
mod 2B tells you where to go.

Step 2: the final odd number o
on the sequence tells you where
in your cluster you are. If K is
the size of the cluster, then o−1
mod 2K identifies your node in
the cluster. (If no odd numbers
are on the sequence, default to
0.)
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Characterizing end-extensional possibility

Theorem (Hamkins–Welch–W.)

The following are equivalent, for countable ω-nonstandard M |= ZF, and ϕ
a sentence.

1 M |= ϕ in end-extensional potentialism.

2 For each standard k, M thinks that each countable transitive has an
end-extension to a model of ZFk + ϕ.

3 For each standard k, M thinks that each real is in an ω-model of
ZFk + ϕ.

4 ϕ is consistent with ZF plus the Σ1-theory of M.
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The end-extensional maximality principle

M satisfies the end-extensional maximality principle if for any sentence ϕ
we have M |= ϕ implies M |= ϕ.

(This is outright false if you allow parameters in ϕ.)

Observation: if M satisfies the end-extensional maximality principle then it
must be ω-nonstandard.

Corollary (Hamkins–Welch–W.)

Every countable model of ZF has a ∆0-elementary extension which
satisfies the end-extensional maximality principle. It will also satisfy the
maximality principle for ∆0-elementary extensions.

Question

Does every countable ω-nonstandard model of ZF have an end-extension
which satisfies the end-extensional maximality principle?
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Thank you!
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