The Σ_1 universal finite sequence

Kameryn J Williams

University of Hawai'i at Mānoa

7th biannual European Set Theory Conference 2019 July 4

Joint work with Joel David Hamkins and Philip Welch

Potentialism as a general framework

Definition

A potentialist system (\mathcal{M},\subseteq) is a collection of worlds which are structures in a common signature, ordered by a reflexive, transitive relation \subseteq which refines the substructure relation.

Used to formalize the intuition of a dynamically growing domain.

Potentialism as a general framework

Definition

A potentialist system (\mathcal{M},\subseteq) is a collection of worlds which are structures in a common signature, ordered by a reflexive, transitive relation \subseteq which refines the substructure relation.

Used to formalize the intuition of a dynamically growing domain.

For instance, Linnebo and Stewart used this framework to formalize Aristotle's notion of the potential infinite. In their potentialist system, worlds are finite initial segments of ω , ordered by extension.

Potentialist perspectives have rich antecedents in set theory.

Potentialist perspectives have rich antecedents in set theory.

• Zermeloian potentialism Worlds are V_{κ} for inaccessible κ .

Potentialist perspectives have rich antecedents in set theory.

- Zermeloian potentialism Worlds are V_{κ} for inaccessible κ .
- The generic multiverse Worlds are forcing extensions of a fixed universe of sets.

Potentialist perspectives have rich antecedents in set theory.

- Zermeloian potentialism Worlds are V_{κ} for inaccessible κ .
- The generic multiverse Worlds are forcing extensions of a fixed universe of sets.
- The hyperverse of countable transitive models Worlds are countable transitive models.

A modal interpretation

 (\mathcal{M},\subseteq) is a potentialist system.

- $\Diamond \varphi$ is true at a world M if φ is true in some extension $N \supseteq M$.
- $\Box \varphi$ is true at a world M if φ is true in every extension $N \supseteq M$.

A modal interpretation

 (\mathcal{M},\subseteq) is a potentialist system.

- $\Diamond \varphi$ is true at a world M if φ is true in some extension $N \supseteq M$.
- $\Box \varphi$ is true at a world M if φ is true in every extension $N \supseteq M$.

The modal validities of $\mathcal M$ are the modal assertions which are true in every world (under any interpretation of the propositional variables).

A modal interpretation

 (\mathcal{M},\subseteq) is a potentialist system.

- $\Diamond \varphi$ is true at a world M if φ is true in some extension $N \supseteq M$.
- $\Box \varphi$ is true at a world M if φ is true in every extension $N \supseteq M$.

The modal validities of \mathcal{M} are the modal assertions which are true in every world (under any interpretation of the propositional variables).

The theory S4 is always a lower bound for the modal validities.

$$\Box(p \Rightarrow q) \Rightarrow (\Box p \Rightarrow \Box q)$$

$$\neg \diamondsuit p \Leftrightarrow \Box \neg p$$

$$\Box p \Rightarrow p$$

$$\Box p \Rightarrow \Box \Box p$$

The modal logic of potentialism

- Zermeloian potentialism has S4.3 as its modal validities. (Hamkins-Linnebo)
- The generic multiverse has S4.2 as its modal validities. (Hamkins-Löwe)
- The hyperverse of countable transitive models has \$4.2 as its modal validities. (Hamkins-Linnebo)

$$\Diamond \Box \varphi \Rightarrow \Box \Diamond \varphi$$

$$(3) \qquad (\diamondsuit \varphi \land \diamondsuit \psi) \Rightarrow ((\varphi \land \diamondsuit \psi) \lor (\diamondsuit \varphi \land \psi))$$

Branching versus directed potentialism

Having S4.2 as modal validities expresses directedness of the modalities, while failures of the .2 axiom express that there is incompatible branching.

$$\Diamond \Box \varphi \Rightarrow \Box \Diamond \varphi$$

Directedness expresses a coherence to how we extend further and further, while branching expresses a more radical potentialism in which we have to make choices with permanent consequence.

Branching versus directed potentialism

Having S4.2 as modal validities expresses directedness of the modalities, while failures of the .2 axiom express that there is incompatible branching.

$$\Diamond \Box \varphi \Rightarrow \Box \Diamond \varphi$$

Directedness expresses a coherence to how we extend further and further, while branching expresses a more radical potentialism in which we have to make choices with permanent consequence.

Warning! Directedness/branching of the modalities is not the same thing as directedness/branching of the order relation on the potentialist system. The generic multiverse is not directed as a partial order (Mostowski), but the modal validities for forcing potentialism are precisely S4.2 (Hamkins–Löwe).

The potentialist system we consider: countable models of set theory, ordered by end-extension.

Informally: N end-extends M if $M \subseteq N$ and old sets have no new elements. Formally: N end-extends M if $M \subseteq N$ and $a \in N$ $b \in M$ implies $a \in M$.

The potentialist system we consider: countable models of set theory, ordered by end-extension.

Informally: N end-extends M if $M \subseteq N$ and old sets have no new elements. Formally: N end-extends M if $M \subseteq N$ and $a \in N$ $b \in M$ implies $a \in M$. Examples:

ullet Rank-extensions, e.g. $V_lpha \subseteq V_eta$

The potentialist system we consider: countable models of set theory, ordered by end-extension.

Informally: N end-extends M if $M \subseteq N$ and old sets have no new elements. Formally: N end-extends M if $M \subseteq N$ and $a \in N$ $b \in M$ implies $a \in M$. Examples:

- ullet Rank-extensions, e.g. $V_lpha \subseteq V_eta$
- Forcing extensions $V \subseteq V[G]$

The potentialist system we consider: countable models of set theory, ordered by end-extension.

Informally: N end-extends M if $M \subseteq N$ and old sets have no new elements. Formally: N end-extends M if $M \subseteq N$ and $a \in N$ $b \in M$ implies $a \in M$. Examples:

- ullet Rank-extensions, e.g. $V_lpha \subseteq V_eta$
- Forcing extensions $V \subseteq V[G]$
- And many more!

The potentialist system we consider: countable models of set theory, ordered by end-extension.

Informally: N end-extends M if $M \subseteq N$ and old sets have no new elements. Formally: N end-extends M if $M \subseteq N$ and $a \in N$ $b \in M$ implies $a \in M$. Examples:

- ullet Rank-extensions, e.g. $V_{lpha} \subseteq V_{eta}$
- Forcing extensions $V \subseteq V[G]$
- And many more!

Theorem (Keisler–Morley)

Every countable model of ZF has an elementary end-extension, which is necessarily also a rank-extension.

The potentialist system we consider: countable models of set theory, ordered by end-extension.

Informally: N end-extends M if $M \subseteq N$ and old sets have no new elements. Formally: N end-extends M if $M \subseteq N$ and $a \in N$ $b \in M$ implies $a \in M$. Examples:

- ullet Rank-extensions, e.g. $V_lpha \subseteq V_eta$
- Forcing extensions $V \subseteq V[G]$
- And many more!

Theorem (Keisler-Morley)

Every countable model of ZF has an elementary end-extension, which is necessarily also a rank-extension.

Observation

If N end-extends M and M $\models \varphi(a)$ for a Σ_1 formula φ , then N $\models \varphi(a)$.

The Σ_1 -definable universal finite sequence

Let $\overline{\mathsf{ZF}}$ be a fixed computably enumerable extension of ZF .

Theorem (Hamkins-Welch-W.)

There is a Σ_1 definition for a finite sequence

$$a_0,\ldots,a_n$$

with the following properties.

- ② If $M \models \overline{\mathsf{ZF}}$ is transitive then the sequence in M is the empty sequence.
- **③** If in countable $M \models \overline{\mathsf{ZF}}$ the sequence is s and $\mathsf{t} \in M$ is any finite extension of s , then there is $N \models \overline{\mathsf{ZF}}$ an end-extension of M so that the sequence in N is exactly t .

The Σ_1 -definable universal finite sequence

Let $\overline{\mathsf{ZF}}$ be a fixed computably enumerable extension of ZF .

Theorem (Hamkins-Welch-W.)

There is a Σ_1 definition for a finite sequence

$$a_0,\ldots,a_n$$

with the following properties.

- **2** If $M \models \overline{\mathsf{ZF}}$ is transitive then the sequence in M is the empty sequence.
- **③** If in countable $M \models \overline{\mathsf{ZF}}$ the sequence is s and $t \in M$ is any finite extension of s, then there is $N \models \overline{\mathsf{ZF}}$ an end-extension of M so that the sequence in N is exactly t.
- Indeed, in (3) it suffices that $M \models \mathsf{ZF}$ has an inner model $W \models \overline{\mathsf{ZF}}$.

 a_0, \ldots, a_n is defined using auxiliary information $k_0 > \cdots > k_n$ finite ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets. Stage n succeeds if all previous stages succeed, and

 a_0, \ldots, a_n is defined using auxiliary information $k_0 > \cdots > k_n$ finite ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage *n* succeeds if all previous stages succeed, and there are *a*, $k < k_{n-1}$, and $m \ni m_{n-1}$ so that

 a_0, \ldots, a_n is defined using auxiliary information $k_0 > \cdots > k_n$ finite ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage n succeeds if all previous stages succeed, and there are a, $k < k_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}_k$ in which the process A sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information.

 a_0, \ldots, a_n is defined using auxiliary information $k_0 > \cdots > k_n$ finite ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage n succeeds if all previous stages succeed, and there are a, $k < k_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}_k$ in which the process A sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information.

If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

 a_0, \ldots, a_n is defined using auxiliary information $k_0 > \cdots > k_n$ finite ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage n succeeds if all previous stages succeed, and there are a, $k < k_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}_k$ in which the process A sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information.

If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

The apparent circularity of the definition is resolved by the Gödel–Carnap fixed-point theorem.

 a_0, \ldots, a_n is defined using auxiliary information $k_0 > \cdots > k_n$ finite ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage n succeeds if all previous stages succeed, and there are a, $k < k_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}_k$ in which the process A sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information.

If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

The apparent circularity of the definition is resolved by the Gödel–Carnap fixed-point theorem. The definition is Σ_1 .

 a_0, \ldots, a_n is defined using auxiliary information $k_0 > \cdots > k_n$ finite ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage n succeeds if all previous stages succeed, and there are a, $k < k_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}_k$ in which the process A sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information.

If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

The apparent circularity of the definition is resolved by the Gödel–Carnap fixed-point theorem. The definition is Σ_1 . The sequence is finite, because the k_i count down.

 a_0, \ldots, a_n is defined using auxiliary information $k_0 > \cdots > k_n$ finite ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage n succeeds if all previous stages succeed, and there are a, $k < k_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}_k$ in which the process A sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information.

If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

The apparent circularity of the definition is resolved by the Gödel–Carnap fixed-point theorem. The definition is Σ_1 . The sequence is finite, because the k_i count down. Each k_i must be nonstandard (by reflection).

 a_0, \ldots, a_n is defined using auxiliary information $k_0 > \cdots > k_n$ finite ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage n succeeds if all previous stages succeed, and there are a, $k < k_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}_k$ in which the process A sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information.

If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

The apparent circularity of the definition is resolved by the Gödel–Carnap fixed-point theorem. The definition is Σ_1 . The sequence is finite, because the k_i count down. Each k_i must be nonstandard (by reflection).

To extend: if stage n fails in M then for any $a \in M$ and nonstandard $k < k_{n-1}$ can find in $M^+[g]$, a forcing extension of an elementary end-extension of M, a model of $\overline{\mathbb{ZF}}_k$, which end-extends $m = V_{\theta}^{M^+} \supseteq M$ and whose process A sequence is a_0, \ldots, a_{n-1}, a .

 a_0, \ldots, a_n is defined using auxiliary information $\lambda_0 > \cdots > \lambda_n$ countable ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets. Stage *n* succeeds if all previous stages succeed, and

 a_0, \ldots, a_n is defined using auxiliary information $\lambda_0 > \cdots > \lambda_n$ countable ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage n succeeds if all previous stages succeed, and there are a, $\lambda < \lambda_{n-1}$, and $m \ni m_{n-1}$ so that

 a_0, \ldots, a_n is defined using auxiliary information $\lambda_0 > \cdots > \lambda_n$ countable ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage *n* succeeds if all previous stages succeed, and there are a, $\lambda < \lambda_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}$ in which the process B sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information; and:

 a_0, \ldots, a_n is defined using auxiliary information $\lambda_0 > \cdots > \lambda_n$ countable ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage *n* succeeds if all previous stages succeed, and there are a, $\lambda < \lambda_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}$ in which the process B sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information; and:

the tree canonically associated to the Π_1^1 assertion " (m, \in) has no end-extension blah blah" is well-founded and has rank λ .

 a_0, \ldots, a_n is defined using auxiliary information $\lambda_0 > \cdots > \lambda_n$ countable ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage *n* succeeds if all previous stages succeed, and there are a, $\lambda < \lambda_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}$ in which the process B sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information; and:

the tree canonically associated to the Π_1^1 assertion " (m, \in) has no end-extension blah blah" is well-founded and has rank λ .

If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

 a_0, \ldots, a_n is defined using auxiliary information $\lambda_0 > \cdots > \lambda_n$ countable ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage *n* succeeds if all previous stages succeed, and there are a, $\lambda < \lambda_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}$ in which the process B sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information; and:

the tree canonically associated to the Π_1^1 assertion " (m, \in) has no end-extension blah blah" is well-founded and has rank λ .

If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

Similar to before: The apparent circularity of the definition is resolved by the Gödel-Carnap fixed-point theorem.

 a_0, \ldots, a_n is defined using auxiliary information $\lambda_0 > \cdots > \lambda_n$ countable ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage *n* succeeds if all previous stages succeed, and there are a, $\lambda < \lambda_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}$ in which the process B sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information; and:

end-extension blah blah" is well-founded and has rank λ .

the tree canonically associated to the Π_1^1 assertion " (m, \in) has no

If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

Similar to before: The apparent circularity of the definition is resolved by the Gödel-Carnap fixed-point theorem. The definition is Σ_1 .

 a_0, \ldots, a_n is defined using auxiliary information $\lambda_0 > \cdots > \lambda_n$ countable ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage *n* succeeds if all previous stages succeed, and there are a, $\lambda < \lambda_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}$ in which the process B sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information; and:

the tree canonically associated to the Π_1^1 assertion " (m, \in) has no end-extension blah blah" is well-founded and has rank λ .

If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

Similar to before: The apparent circularity of the definition is resolved by the Gödel-Carnap fixed-point theorem. The definition is Σ_1 . The sequence is finite, because the λ_i count down.

 a_0, \ldots, a_n is defined using auxiliary information $\lambda_0 > \cdots > \lambda_n$ countable ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage *n* succeeds if all previous stages succeed, and there are a, $\lambda < \lambda_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}$ in which the process B sequence is exactly $a_0, \ldots, a_{n-1}, a_n$ defined using the same auxiliary information; and:

end-extension blah blah" is well-founded and has rank λ . If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

the tree canonically associated to the Π_1^1 assertion " (m, \in) has no

Similar to before: The apparent circularity of the definition is resolved by the Gödel-Carnap fixed-point theorem. The definition is Σ_1 . The sequence is finite, because the λ_i count down. Each λ_i must be nonstandard.

 a_0, \ldots, a_n is defined using auxiliary information $\lambda_0 > \cdots > \lambda_n$ countable ordinals and $m_0 \in \cdots \in m_n$ countable transitive sets.

Stage *n* succeeds if all previous stages succeed, and there are a, $\lambda < \lambda_{n-1}$, and $m \ni m_{n-1}$ so that (m, \in) has **no** end-extension to a model N of $\overline{\mathsf{ZF}}$ in which the process B sequence is exactly a_0, \ldots, a_{n-1}, a , defined using the same auxiliary information; and:

end-extension blah blah" is well-founded and has rank λ . If stage n succeeds, let (a_n, k_n, m_n) be the triple seen first in the L-order.

the tree canonically associated to the Π_1^1 assertion " (m, \in) has no

Similar to before: The apparent circularity of the definition is resolved by the Gödel-Carnap fixed-point theorem. The definition is Σ_1 . The sequence is finite, because the λ_i count down. Each λ_i must be nonstandard.

To extend: again find the desired end-extension of M in a forcing extension of an elementary end-extension of M.

Process C—for all models

You can combine processes A and B into a single process which has the extension property for any countable model of $\overline{\mathsf{ZF}}$.

The Barwise extension theorem

Theorem (Barwise)

Every countable model of ZF end-extends to a model of ZFC + V = L.

The Barwise extension theorem

Theorem (Barwise)

Every countable model of ZF end-extends to a model of ZFC + V = L.

Our theorem gives a new proof of the Barwise extension theorem, which does not go through the theory of admissible sets. (Either derive it as an immediate corollary of (4) using $\overline{\mathsf{ZF}} = \mathsf{ZFC} + \mathrm{V} = \mathrm{L}$, or you can give a direct proof similar to our proof for the universal finite sequence.)

 (\mathcal{M},\subseteq) a potentialist system, worlds have sequences and integers.

Definition

- **1** If M is a world in \mathcal{M} then s^M is a finite sequence.
- ② If $M \subseteq N$ are worlds in \mathcal{M} then $s^M \subseteq s^N$.
- **3** If M is a world in \mathcal{M} and $t \in M$ is any finite sequence extending s^M , then there is $N \supset M$ in \mathcal{M} so that $s^N = t$.

 (\mathcal{M},\subseteq) a potentialist system, worlds have sequences and integers.

Definition

- **1** If M is a world in \mathcal{M} then s^M is a finite sequence.
- ② If $M \subseteq N$ are worlds in \mathcal{M} then $s^M \subseteq s^N$.
- **3** If M is a world in \mathcal{M} and $t \in M$ is any finite sequence extending s^M , then there is $N \supseteq M$ in \mathcal{M} so that $s^N = t$.
 - End-extensional potentialism admits a universal finite sequence.

 (\mathcal{M},\subseteq) a potentialist system, worlds have sequences and integers.

Definition

- **1** If M is a world in \mathcal{M} then s^M is a finite sequence.
- ② If $M \subseteq N$ are worlds in \mathcal{M} then $s^M \subseteq s^N$.
- **3** If M is a world in \mathcal{M} and $t \in M$ is any finite sequence extending s^M , then there is $N \supseteq M$ in \mathcal{M} so that $s^N = t$.
 - End-extensional potentialism admits a universal finite sequence.
- \bullet Corollary: So do $\Delta_0\text{-elementary potentialism}$ and L-extensional potentialism.

 (\mathcal{M},\subseteq) a potentialist system, worlds have sequences and integers.

Definition

- **1** If M is a world in \mathcal{M} then s^M is a finite sequence.
- ② If $M \subseteq N$ are worlds in \mathcal{M} then $s^M \subseteq s^N$.
- **3** If M is a world in \mathcal{M} and $t \in M$ is any finite sequence extending s^M , then there is $N \supseteq M$ in \mathcal{M} so that $s^N = t$.
 - End-extensional potentialism admits a universal finite sequence.
 - ullet Corollary: So do Δ_0 -elementary potentialism and L-extensional potentialism.
 - As does rank-extensional potentialism. (Hamkins-Woodin)

 (\mathcal{M},\subseteq) a potentialist system, worlds have sequences and integers.

Definition

- **1** If M is a world in \mathcal{M} then s^M is a finite sequence.
- ② If $M \subseteq N$ are worlds in \mathcal{M} then $s^M \subseteq s^N$.
- **3** If M is a world in \mathcal{M} and $t \in M$ is any finite sequence extending s^M , then there is $N \supseteq M$ in \mathcal{M} so that $s^N = t$.
 - End-extensional potentialism admits a universal finite sequence.
 - \bullet Corollary: So do $\Delta_0\text{-elementary potentialism}$ and L-extensional potentialism.
 - As does rank-extensional potentialism. (Hamkins-Woodin)
 - Woodin's universal algorithm gives a universal finite sequence for arithmetic potentialism.

A universal finite sequence implies branching potentialism

Theorem (Hamkins)

If a potentialist system admits a universal finite sequence, then its modal validities are precisely S4. So it has branching modalities.

(If worlds may be ω -nonstandard, then you need a single parameter, for the length of the sequence. If all worlds are ω -standard, then this holds without admitting parameters.)

A universal finite sequence implies branching potentialism

Theorem (Hamkins)

If a potentialist system admits a universal finite sequence, then its modal validities are precisely S4. So it has branching modalities. (If worlds may be ω -nonstandard, then you need a single parameter, for

the length of the sequence. If all worlds are ω -standard, then this holds without admitting parameters.)

S4 is always a lower bound. To get that it also an upper bound uses that the class of finite pre-trees is complete for S4. That is, if a modal assertion φ is not in S4 then there is a finite pre-tree which invalidates φ .

A universal finite sequence implies branching potentialism

Theorem (Hamkins)

If a potentialist system admits a universal finite sequence, then its modal validities are precisely S4. So it has branching modalities. (If worlds may be ω -nonstandard, then you need a single parameter, for the length of the sequence. If all worlds are ω -standard, then this holds without admitting parameters.)

S4 is always a lower bound. To get that it also an upper bound uses that the class of finite pre-trees is complete for S4. That is, if a modal assertion φ is not in S4 then there is a finite pre-tree which invalidates φ .

So to prove the theorem we have to see how to use a universal finite sequence to label pre-trees with formulae so that the order-relation on the pre-tree agrees with possibility among the formulae.

The universal finite sequence and labeling pre-trees

Look at what gets added to the end of the universal finite sequence:

The universal finite sequence and labeling pre-trees

Look at what gets added to the end of the universal finite sequence:

Step 1: the subsequence \(\lefta i \rightarrow \) of even numbers tell you how to descend the tree to determine your cluster. If \(B \) is the branching of the current node, then \(e_i \) mod \(2B \) tells you where to go.

The universal finite sequence and labeling pre-trees

Look at what gets added to the end of the universal finite sequence:

- Step 1: the subsequence $\langle e_i \rangle$ of even numbers tell you how to descend the tree to determine your cluster. If B is the branching of the current node, then e_i mod 2B tells you where to go.
- Step 2: the final odd number o on the sequence tells you where in your cluster you are. If K is the size of the cluster, then o-1 mod 2K identifies your node in the cluster. (If no odd numbers are on the sequence, default to 0.)

Characterizing end-extensional possibility

Theorem (Hamkins-Welch-W.)

The following are equivalent, for countable ω -nonstandard $M \models \mathsf{ZF}$, and φ a sentence.

- **1** $M \models \Diamond \varphi$ in end-extensional potentialism.
- **②** For each standard k, M thinks that each countable transitive has an end-extension to a model of $\mathsf{ZF}_k + \varphi$.
- **3** For each standard k, M thinks that each real is in an ω -model of $\mathsf{ZF}_k + \varphi$.
- φ is consistent with ZF plus the Σ_1 -theory of M.

M satisfies the end-extensional maximality principle if for any sentence φ we have $M \models \Diamond \Box \varphi$ implies $M \models \varphi$.

M satisfies the end-extensional maximality principle if for any sentence φ we have $M \models \Diamond \Box \varphi$ implies $M \models \varphi$.

(This is outright false if you allow parameters in φ .)

M satisfies the end-extensional maximality principle if for any sentence φ we have $M \models \Diamond \Box \varphi$ implies $M \models \varphi$.

(This is outright false if you allow parameters in φ .)

Observation: if M satisfies the end-extensional maximality principle then it must be ω -nonstandard.

M satisfies the end-extensional maximality principle if for any sentence φ we have $M \models \Diamond \Box \varphi$ implies $M \models \varphi$.

(This is outright false if you allow parameters in φ .)

Observation: if M satisfies the end-extensional maximality principle then it must be ω -nonstandard.

Corollary (Hamkins-Welch-W.)

Every countable model of ZF has a Δ_0 -elementary extension which satisfies the end-extensional maximality principle.

M satisfies the end-extensional maximality principle if for any sentence φ we have $M \models \Diamond \Box \varphi$ implies $M \models \varphi$.

(This is outright false if you allow parameters in φ .)

Observation: if M satisfies the end-extensional maximality principle then it must be ω -nonstandard.

Corollary (Hamkins–Welch–W.)

Every countable model of ZF has a Δ_0 -elementary extension which satisfies the end-extensional maximality principle. It will also satisfy the maximality principle for Δ_0 -elementary extensions.

M satisfies the end-extensional maximality principle if for any sentence φ we have $M \models \Diamond \Box \varphi$ implies $M \models \varphi$.

(This is outright false if you allow parameters in φ .)

Observation: if M satisfies the end-extensional maximality principle then it must be ω -nonstandard.

Corollary (Hamkins-Welch-W.)

Every countable model of ZF has a Δ_0 -elementary extension which satisfies the end-extensional maximality principle. It will also satisfy the maximality principle for Δ_0 -elementary extensions.

Question

Does every countable ω -nonstandard model of ZF have an end-extension which satisfies the end-extensional maximality principle?

Thank you!