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Abstract. Given a countable model of set theory, we study the structure of its generic multi-

verse, the collection of its forcing extensions and ground models, ordered by inclusion. Mostowski
showed that any finite poset embeds into the generic multiverse while preserving the nonexis-

tence of upper bounds. We obtain several improvements of his result, using what we call the

blockchain construction to build generic objects with varying degrees of mutual genericity. The
method accommodates certain infinite posets, and we can realize these embeddings via a wide

variety of forcing notions, while providing control over lower bounds as well. We also give a

generalization to class forcing in the context of second-order set theory, and exhibit some further
structure in the generic multiverse, such as the existence of exact pairs.

1. Introduction

Forcing is the predominant method of building new models of set theory. From a given model we
may build up myriad forcing extensions, adding new objects to our models as we proceed; or we
may in contrast dig down on a geological tack to various grounds and the mantle, as done recently
by Fuchs, the second author, and Reitz [FHR15], stripping away any superfluous forcing that might
earlier have been performed. By iterating these two operations in turn, we thereby construct a
robust collection of models, all ultimately derived from the initial model and exhibiting a certain
family resemblance. Namely, we arrive at the generic multiverse of the original model, first defined
by Woodin [Woo11].

1.1. Definition. The generic multiverse of a countable transitive1 model of set theory M � zfc is
the smallest collection of models containing M and closed under forcing extensions and grounds. �

We shall simply refer to the generic multiverse, although of course the particular multiverse that
arises depends on the original model M , or indeed on any of the models in it, for the generic
multiverse of a model is an equivalence class in the corresponding partition of the space of all
models. But in this article, let it be understood that we start from an arbitrary countable transitive
model of set theory M , fixed for the remainder of the paper, and consider the resulting generic
multiverse of this model.

Given a definable class Γ of posets, such as ccc or proper posets and so on, one could just as well
consider the Γ-generic multiverse, obtained by forcing extensions and ground models using only
forcing notions in Γ. The definition of Γ should be reinterpreted in each model anew, with the
restriction to ccc posets, say, being read de dicto rather than de re.
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Typically, the generic multiverse is of interest because of the models themselves. After all, it arose
because of the study of forcing which gives us new and exciting models of set theory to play with.
But the generic multiverse is also an interesting object per se and as a whole. Just as computability
theorists are interested not only in the computational content of particular Turing degrees, but
also in the global structure of these degrees, so too can set theorists venture beyond the particular
models in the generic multiverse and study the structure as a whole. The aspect of this structure
in which we are most interested in this paper is simply the inclusion relation between models.

In work growing out of the modal logic of forcing [HL08, HL13] and set-theoretic geology [FHR15],
the second author had inquired whether the inclusion relation in the generic multiverse coincides
with the forcing-extension relation (e.g. [Ham16, Question 1]). Since one might arrive from one
model to a smaller model by means of a circuitous zig-zag path of successive forcing extensions and
grounds, there seemed at first to be no direct reason to expect the smaller model necessarily to be
a ground of the original model. Nevertheless, the second author [Ham16, Theorem 3] had proved
that if the downward-directed grounds hypothesis ddg was true, then indeed the inclusion relation
was the forcing-extension relation in the generic multiverse. In a major result, Usuba [Usu17]
subsequently proved that indeed the generic multiverse is downward directed, establishing the
following corollary.

1.2. Lemma. Let N0 and N1 be models in the generic multiverse of M . If N0 ⊆ N1 then N1 is a
forcing extension of N0.

Proof. The proof amounts to [Ham16, Theorem 3] plus Usuba’s result on the ddg [Usu17]. Namely,
from the ddg it follows that the collection of forcing extensions of grounds of M is closed under
both forcing extensions and grounds, and so this collection of models is precisely the generic
multiverse of M . If N0 ⊆ N1 are among these, then there is some ground N of N1 such that
N ⊆ N0 ⊆ N1. The model N0 is therefore intermediate between a ground model and one of its
forcing extensions. It follows by the intermediate model theorem (see [Jec03, Lemma 15.43 and
the discussion preceding Theorem 16.4]) that N1 is also a forcing extension of N0. �

The order structure of the generic multiverse has been studied before. For example, Reitz [Rei07]
studied the ground axiom, a first-order set-theoretic statement describing the minimal elements
in their generic multiverses, and this work subsequently led to the development of set-theoretic
geology (see [FHR15]), the study of ground models and “going down” in the generic multiverse.
The second author and Löwe had studied the modal logic both of forcing extensions and of grounds
[HL08, HL13], and the second author had looked further into issues of upward closure of the generic
multiverse in [Ham16].

Turning our glance upward, it is clear that the generic multiverse does not have any maximal ele-
ments. However, the upward directedness of the multiverse and the existence of suprema definitely
pose interesting questions.

1.3. Definition. Let M be a countable model of zfc and let E be a family of forcing extensions
of M . We say that the family E is amalgamable (over M) if there is a forcing extension M [G] of
M that contains every model in E . �

We shall similarly say that a family of generic objects is amalgamable if the corresponding family
of generic extensions of M is amalgamable.

It follows from Usuba’s results that a collection E as above is amalgamable precisely when it has an
upper bound in the generic multiverse of M . Furthermore, a similar fact holds not just for forcing
extensions of M , but throughout the generic multiverse: Any given finite collection of models in
the multiverse has an upper bound if and only if the collection is amalgamable over some model
in the multiverse.

We should also note that the amalgamability of some family of extensions {M [Gi] | i ∈ I}, does
not require the amalgamating model to have the actual set {Gi | i ∈ I} or the associated sequence.
Of course, this makes no difference in the case of finite I, but becomes important when discussing
the (non)amalgamability of infinite families.
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Mostowski [Mos76] essentially showed that any finite poset embeds into the generic multiverse in
a way that preserves the nonexistence of upper bounds. For example, this means that, given a
countable modelM , there are two forcing extensionsM [G] andM [H] such that no forcing extension
of M contains both M [G] and M [H]; in other words, M [G] and M [H] form a nonamalgamable
pair. The extensions constructed by Mostowski are all obtained via Cohen forcing, but further
work in [Ham16] shows that the nonamalgamability phenomenon is pervasive and is exhibited by
a much larger family of forcing notions. In the direction of positive structural results, Fuchs, the
second author, and Reitz [FHR15] showed that, while not all chains in the generic multiverse have
upper bounds, any countable increasing chain arising from posets of uniformly bounded size does
have an upper bound. Taken together, these results suggest that the order structure of the generic
multiverse is quite complex.

In this paper we will give a number of improvements to Mostowski’s result, strengthening the
embedding, generalizing to certain infinite posets, and using forcing notions beyond just Cohen
forcing. All these generalizations are obtained using a powerful method we call the blockchain
construction. The method constructs a family of generic objects by stringing together blocks, each
of which conceals a piece of forbidden information. The blocks are furthermore structured in such
a way that this secret remains hidden unless we have access to a collection of the generics that was
meant to be nonamalgamable. In that case the whole structure of the blocks is revealed, together
with the hidden information.

Our main results are the following (see section 2 and section 3 for definitions):

1.4. Theorem. If a family of sets A is defined in M by finite obstacles, then (A,⊆) ∗-embeds into
the generic multiverse of M .

1.5. Theorem. If a family of sets A is defined in M by finite obstacles on a set I and {Pi | i ∈ I} is
a family of wide posets in M , all the same size and at least as large as I, then (A,⊆) ∗-embeds into
the generic multiverse, with the additional property that each A ∈ A maps to a forcing extension
of M by the product

∏
i∈A Pi.

We also have versions of this theorem for the class-generic multiverse, generated by class forcings
over a model of second-order set theory. (See section 4 for definitions.)

1.6. Theorem. Let (M,X ) be a countable transitive model of gbc plus the Elementary Class
Choice principle. If a family of sets A ∈ M is defined in (M,X ) by finite obstacles on a class
I ∈ X and {Pi | i ∈ I} ∈ X is a family of pretame Ord-wide class forcing notions, then (A,⊆) ∗-
embeds into the class-generic multiverse of (M,X ), with each A ∈ A mapping to a forcing extension
of (M,X ) by the product

∏
i∈A Pi.

Beyond generalizing Mostowski’s result, we also demonstrate some further complexities of the
generic multiverse. For example:

1.7. Theorem. Suppose M ⊆M [c0] ⊆M [c1] ⊆ . . . is a countable chain where each cn is a Cohen
real over M . Then this chain admits an exact pair and, consequently, does not have a supremum
in the generic multiverse.

2. The Blockchain Argument—Following Mostowski

In this section we would like to present an adaptation of Mostowski’s original argument from [Mos76]
to the context of the generic multiverse, as well as an improved version thereof. Our purpose in
recounting Mostowski’s proof is twofold: first, it will serve as a template for our own proofs going
forward, and second, the result seems largely unknown and we would like to highlight it (indeed,
we had been unaware of Mostowski’s result and found the reference only after having made essen-
tially similar arguments on our own). To be clear, Mostowski was interested in studying what was
substantially a multiverse of countable models of second-order set theory with a fixed first-order
part, together with the corresponding notion of amalgamability. Nevertheless, the methods apply
equally well to the generic multiverse setting (and we will return to the second-order context in
section 4).
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2.1. Theorem (Mostowski). Let ` < ω and let A be a family of subsets of {0, 1, . . . , `} containing
all singletons and closed under subsets. Then there are Cohen reals c0, c1, . . . , c` such that, for any
A ⊆ {0, 1, . . . , `}, the family {M [cn] | n ∈ A} is amalgamable precisely when A ∈ A.

In the proof we will construct the reals cn step by step, meeting requirements for amalgamability
and nonamalgamability in turn. Since the nonamalgamability steps are the key ones, we first
present a simpler construction, where these are the only steps we need to make.

2.2. Proposition. There are Cohen reals c, d over M such that M [c] and M [d] are nonamalgam-
able.

2.3. Definition. Let M be a countable transitive model of zfc. A real z is catastrophic for M if
the height of any model of zfc containing z is greater than that of M . �

For example, any real coding the height of M will definitely be catastrophic for M . The important
feature of catastrophic reals is that they cannot appear in any model in the generic multiverse of
M . Consequently, our strategy for ensuring nonamalgamability will be to code catastrophic reals
between various generics.

Proof of Proposition 2.2. We will build two descending sequences of Cohen conditions pn and qn
that will each generate their own generic real c and d, and along the way we will also make sure
to split a code of a catastrophic real between c and d.

Enumerate the open dense subsets of Add(ω, 1) in M as 〈Dn | n < ω〉 and fix a catastrophic
real z for M . Suppose that we have already built conditions pm, qm for m < 2n and each pair of
conditions pm, qm has the same length. At this stage of the construction we are handed the open
dense set Dn; we properly extend the condition on the p-side into Dn and pad the condition on the
q-side to the same length with 0s. Finally, extend each of the resulting conditions by appending a 1
and then the bit z(2n). This gives us the conditions p2n, q2n. At the next stage of the construction
we do the exact same thing but with the roles of the two conditions switched and append the bit
z(2n+ 1). We illustrate the construction in Figure 1.

c→
d→

1 0

1 0

↑
z(0) = 0

1 1

1 1

↑
z(1) = 1

1 0

1 0

↑
z(2) = 0

1 0

1 0

↑
z(3) = 0

1 1

1 1

↑
z(4) = 1

Figure 1. Coding z between the two generics. The clear areas are padded with
0s and each point coding a bit of z is preceded by a start marker—a single ’1’.

We now let c :=
⋃
n pn and d :=

⋃
n qn. Clearly both c and d are Cohen reals over M . But note

that any model containing both of them would be able to recover z, since the places where we
coded z are precisely those places which follow a start marker (i. e. both c and d have a 1 on the
previous place—the start marker—and at least one of c and d has a 0 immediately preceding the
start marker). This means that M [c] and M [d] cannot be amalgamated, since z is catastrophic for
M . �

The key to this argument was that the two generic reals were built in blocks, and within each block
only one of them was permitted to be active, that is, to have nonzero bits. This allowed us to use
the places where both were active to mark the endpoints of the blocks and thus the coding points
where z was hidden.

The proof of Mostowski’s theorem will use the same strategy, building a chain of blocks and only
permitting certain columns to be active within each block.

Proof of Theorem 2.1. Fix an enumeration in order type ω of all pairs (A,D) where A ∈ A and
D ∈M is an open dense subset of Add(ω,A). Also fix a catastrophic real z for M . We again build
descending sequences of conditions, seen as filling in an ω-by-(` + 1) matrix with 0s and 1s. The
columns of this matrix will grow into the desired generic reals ck. We will also ensure that at each
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step of the construction we have completely filled in the matrix below some row and that there are
no entries above this row.

Suppose that we are at some stage in our construction and we are handed an A ∈ A and a dense
set D ⊆ Add(ω,A). We now properly extend the columns with indices in A to collectively meet the
dense set D and pad the remaining columns with 0s to make sure that all columns have the same
height. Finally, extend each column by appending a 1 and then the next bit of z. We illustrate
the first few steps of this construction in Figure 2.

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 ← z(0) = 0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 ← z(1) = 1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 ← z(2) = 0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 ← z(3) = 0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 ← z(4) = 1

Figure 2. The set-theoretic blockchain of Theorem 2.1. Clear areas are again
padded with 0s.

This completes the construction and we can let ck :=
⋃
n p

n
k . Given any A ∈ A, the columns in A

were given a chance to meet all of the dense subsets of Add(ω,A), and so {ck | k ∈ A} are mutually
generic over M , and consequently they are amalgamable.

On the other hand, suppose we are given {ck | k ∈ B} for some B /∈ A. Observe that the only
places where all of the columns in B are active are exactly the coding points for z, since A is closed
under subsets, so in between the coding points B always has to have a column padded with 0s.
It follows that, given the reals ck for k ∈ B, we can recover the catastrophic real z, which means
that the corresponding extensions are not amalgamable. �

It is not difficult to see that any finite poset embeds into a family of sets of natural numbers closed
under subsets in a way that preserves the nonexistence of upper bounds. It therefore follows from
Mostowski’s theorem that any finite poset embeds into the generic multiverse while preserving
nonamalgamability. In the next theorem we shall extend this result to also include certain infinite
posets and also to have the embedding respect lower bounds.
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2.4. Definition. Let P and Q be posets with least elements 0P and 0Q, respectively. An injective
map f : P → Q is a ∗-embedding if:

• x ≤ y ⇐⇒ f(x) ≤ f(y) for any x, y ∈ P ,
• any finite subset X of P has an upper, or nonzero lower, bound in P if and only if f [X]

has an upper, or nonzero lower, bound in Q, respectively. �

It follows from the definition that a ∗-embedding preserves the least element. Furthermore, the
forward direction of the equivalences in the second bullet point easily follows from the fact that f
is increasing.

2.5. Definition. A family of sets A is defined by a set of obstacles B on a set I if A consists of
the subsets of I that do not contain an element of B. �

Note that any such family is closed under subsets, since if a set avoids all the obstacles, then so does
any subset. For a given family A defined by obstacles, we may assume without loss that I =

⋃
A,

simply by replacing I with
⋃
A. This amounts to assuming that A contains all singletons from

I. We may also assume that the obstacle sets are subsets of I and that they all have at least two
elements. So we will generally make these additional assumptions without remark. We shall be
principally interested in the case where all the obstacles are finite.

2.6. Theorem. Suppose that a family of sets A is defined in M by finite obstacles on a set I.
Then there are M -generic Cohen reals {ci | i ∈ I}, with the following properties:

(1) If A ∈ A, then 〈ci | i ∈ A〉 is generic for Add(ω,A) over M .
(2) If B ∈M , B ⊆ I and B /∈ A, then the family {M [ci] | i ∈ B} does not amalgamate in the

generic multiverse.
(3) If A,A′ ∈ A then M [ci | i ∈ A] ∩M [ci | i ∈ A′] = M [ci | i ∈ A ∩A′].

2.7. Definition. Let I be a set and Pi for i ∈ I posets. If p, q ∈
∏
i∈I Pi and J ⊆ I, we say that p

is a J-extension of q, and write p ≤J q, if p ≤ q and p�I\J = q�I\J . �

Thus, a J-extension strengthens the condition only on the coordinates in J , leaving the other
coordinates untouched. We emphasize that the relation ≤J is not simply the pullback of the order
on

∏
i∈J Pi.

2.8. Lemma. Let X ⊆ Y be sets and let Py for y ∈ Y be posets. Let PY be the product of the
Py (using whatever support you like) and let PX be the subposet corresponding to the coordinates

in X. Let χ be a PY -name such that PY 
 χ ⊆ V [Ġ�X ] but PY 6
 χ ∈ V [Ġ�X ]. Fix a condition

q ∈ PY such that q 
 χ /∈ V [Ġ�X ]. Then there is a PX-name ρ such that no X-extension of q
decides ρ ∈ χ.

Proof. First consider the case X = ∅. So suppose that for every x the condition q decides x̌ ∈ χ.
Let S = {x | q 
 x̌ ∈ χ}. Clearly S is a ground-model set and q 
 χ = Š, which contradicts our
assumption.

In the general case, observe that

q�X 
 (q�Y \X 
 χ /∈ V [Ġ�X ])

Applying the previous case in V PX , we can find a PX -name ρ such that

q�X 
 (q�Y \X does not decide ρ ∈ χ)

We claim that this ρ is as desired. So fix some r ≤X q. Then it follows from the above that

r�X 
 (q�Y \X does not decide ρ ∈ χ)

but, since r�Y \X = q�Y \X , we in fact get

r�X 
 (r�Y \X does not decide ρ ∈ χ)

which implies that r does not decide ρ ∈ χ, as desired. �
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Proof of Theorem 2.6. We proceed with a blockchain argument very much like in the proof of
Theorem 2.1. Some extra care is required since we can no longer terminate blocks by putting 1s
across an entire row, as this would prevent any infinite collection of the ci from being mutually
generic. Instead we will work with blocks of finite width, and it is precisely the fact that A is
defined by finite obstacles that will allow this approach to succeed.

Let B be the set of finite obstacles used to define A. Fix a catastrophic real z for M . We will
be filling in an ω-by-I matrix with 0s and 1s, and its columns will grow into the desired Cohen
reals ci. We will ensure at each stage of our construction that what we have constructed so far is a
condition in Add(ω, I), in effect using finite support in the product. Moreover, we will make sure
that this condition is uniform, in the sense that all of its nonempty columns will have the same
height. Our construction will again be guided by some enumeration of all the relevant requirements
in order type ω. We will, moreover, assume that each requirement is listed infinitely often. At
each stage the enumeration will give us either

(1) an A ∈ A and an open dense subset of Add(ω,A),
(2) a B ∈ B, or
(3) a pair (A,A′) ∈ A2, together with an Add(ω,A)-name σ ∈ M and an Add(ω,A′)-name

τ ∈M for subsets of M [Ġ�A∩A′ ].

Now suppose that we are at some stage of our construction, p is the entire condition in Add(ω, I)
we have constructed so far, and we are given an open dense subset D ⊆ Add(ω,A) for some A ∈ A.
In this case we simply extend the columns of p in A to meet the dense set D and then pad with
0s, if necessary, to obtain a uniform condition.

If we are given an obstacle B ∈ B, we extend the columns of p in B by appending a row of 1s and
then the bit z(n), where n is the number of times that B has occurred in the enumeration before
this step. Note that the result is still a condition in Add(ω, I) since B is finite. At the end we pad
with 0s to make the condition uniform, if necessary.

Finally, suppose we are given a pair of names σ and τ as above. If p�A 
 σ ∈ M [Ġ�A∩A′ ] we do
nothing in this step and proceed with the rest of the construction. If this is not the case, we will
attempt to find an extension q of p that forces σ 6= τ . Given our assumption, we can find some
p′ ≤A p such that p′�A 
 σ /∈M [Ġ�A∩A′ ]. Now apply Lemma 2.8 withX = A∩A′, Y = A, q = p′�A,
and χ = σ to get a name ρ such that no (A ∩ A′)-extension of p′�A decides ρ ∈ σ. Pick an A-
extension of p′ that decides ρ ∈ σ and pad it with 0s to make it uniform; let p′′ be the resulting
condition. Now consider two cases:

(1) If p′′�A′ does not decide ρ ∈ τ the same way as p′′�A decides ρ ∈ σ, we can find a q ≤A′ p′′

such that q�A′ decides it the opposite way. In this case we pad q with 0s to make it uniform,
and the resulting condition is the next step in our construction.

(2) If p′′�A′ decides ρ ∈ τ the same way as p′′�A decides ρ ∈ σ, observe that p′�A∪p′′�A∩A′ is an
(A∩A′)-extension of p′�A, so, by our assumption, it does not decide ρ ∈ σ. Therefore there
must be some q ≤A p′ ∪ (p′′�A′) so that q�A decides ρ ∈ σ differently than q�A′ ≤ p′′�A′

decides ρ ∈ τ . We take this q to be the next step in our construction, after possibly padding
with 0s to make it uniform.

Note that this q is as desired: Since q decides ρ ∈ σ and ρ ∈ τ in opposite ways, it definitely forces
σ 6= τ .

This finishes the construction of the reals ci. Let us verify that they satisfy all of the properties
in the theorem. If A ∈ A then, in the course of our construction, we considered every open dense
subset of Add(ω,A) in M , and we made sure that the columns of our matrix in A met these dense
sets. Therefore 〈ci | i ∈ A〉 really is generic for Add(ω,A).

If B /∈ A, then it must contain an obstacle B′ ∈ B, and we handled this B′ infinitely often during
our construction, each time adding a row of 1s across the columns in B′ and the next bit of z.
Furthermore, we made sure in our construction to only add a row of 1s across a set of columns if
the set was indeed an obstacle set (in which case we also coded a bit of z) or if it was covered by an
element of A. Since the latter is not the case for B′, we can recover z from the reals {ci | i ∈ B′},
and so the family {M [ci] | i ∈ B′} is not amalgamable and therefore neither is {M [ci] | i ∈ B}.
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Finally, suppose that A,A′ ∈ A and we want to see that

M [ci | i ∈ A] ∩M [ci | i ∈ A′] ⊆M [ci | i ∈ A ∩A′]
Let x be an element of this intersection; we may assume by ∈-induction that x ⊆M [ci | i ∈ A∩A′].
Pick an Add(ω,A)-name σ and an Add(ω,A′)-name τ for x. But we were handed this pair of names
at some stage of our construction. At that point it must have been the case that the condition
we had forced σ ∈ M [Ġ�A∩A′ ], since otherwise we would have made sure that σ and τ would be
interpreted as different sets. But this means that x ∈M [ci | i ∈ A ∩A′], as required. �

2.9. Theorem. Let I and A be as in Theorem 2.6. Then (A,⊆) ∗-embeds into the generic multi-
verse given by posets of the form Add(ω,X) for a set X (and mapping ∅ to M).

Proof. Let {ci | i ∈ I} be the Cohen reals given by Theorem 2.6. We define a map on A by sending
A ∈ A to M [ci | i ∈ A]. This map is clearly increasing. Let us check that it is also a ∗-embedding.

Suppose that M [ci | i ∈ A] ⊆ M [ci | i ∈ A′] for some A,A′ ∈ A. It follows that the family
{M [ci] | i ∈ A ∪ A′} is amalgamable, so A ∪ A′ ∈ A. In particular, 〈ci | i ∈ A ∪ A′〉 are mutually
generic over M . Now suppose that there is some ` ∈ A \ A′. Then c` would have to be generic
over M [ci | i ∈ A′] ⊇M [ci | i ∈ A], which is impossible. Therefore A ⊆ A′.

Now suppose that X is a finite subset of A and that {M [ci | i ∈ A] | A ∈ X} is amalgamable. It
follows as above that

⋃
X ∈ A, so X does have an upper bound in A.

Finally, with X as above, suppose that {M [ci | i ∈ A] | A ∈ X} has a lower bound in the generic
multiverse strictly above M . But recall that one of the properties of the Cohen reals constructed
in Theorem 2.6 is that

⋂
A∈XM [ci | i ∈ A] = M [ci | i ∈

⋂
X]. It follows that

⋂
X is nonempty,

and so it is a nonzero lower bound for X in A. �

The theorem is actually slightly stronger than stated, since we obtain nonamalgamability in the
entire generic multiverse and not just in the restricted multiverse given by adding Cohen reals. On
a related note, we can tweak the real z that we coded between the generics to achieve different
kinds of nonamalgamability. For example, we could take z to be a sufficiently generic random real
over M , in which case the models given will be nonamalgamable in the Cohen multiverse, but
amalgamable in, say, the ccc-multiverse.

2.10. Corollary. Any finite poset with a least element ∗-embeds into the generic multiverse. More-
over, any finite meet-semilattice ∗-embeds as such into the generic multiverse.

Proof. It is easy to check that the composition of ∗-embeddings is itself a ∗-embedding, so, in view
of Theorem 2.9, we only need to check that any finite poset P ∗-embeds into a family of sets A
as in Theorem 2.6. We can take A to consist of all sets of the form p↓ := {q ∈ P | 0P < q ≤ p}
and their subsets, where p ∈ P and 0P is the least element of P , and it is straightforward to see
that the map p 7→ p↓ is a ∗-embedding. If P is in addition a meet-semilattice, we can furthermore
observe that both the map p 7→ p↓ and the ∗-embedding from Theorem 2.9 preserve meets. �

3. Generalizing to Wide Forcing

The blockchain arguments given in the previous section clearly generalize to other forcing no-
tions where conditions are some kind of bounded sequence, such as Add(κ, 1) or Coll(κ, λ). The
next question we are interested in is whether the nonamalgamability phenomenon (and various
∗-embeddings) can be realized using an even larger variety of forcing notions, and even possibly
while using several nonisomorphic posets at once.

The obvious obstacle to our grand ambition is that there are always pairs of posets such that any
two generic extensions of M by these posets amalgamate: just take Add(ω, 1) and Add(ω1, 1), for
example. Retreating a bit to just consider one poset at a time, the second author showed in [Ham16]
that, under ♦, there is a Suslin tree T exhibiting automatic mutual genericity, meaning that any
two generic filters for T are mutually generic. Any two extensions by such forcing are therefore
amalgamable. The question whether posets exhibiting automatic mutual genericity always exist
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is open, although Ben-Neria and Chen managed to show that the Suslin tree used by the second
author is essentially the only ccc example (see [Ham15]).

Skirting these counterexamples, the second author introduced the notion of a wide poset and
proved the nonamalgamation theorem for wide forcing.

3.1. Definition ([Ham16]). A poset P is wide if there is, for any p ∈ P, a maximal antichain in P
below p of size |P|. �

For example, the Cohen poset Add(ω, 1) is wide, as are collapse posets Coll(κ, λ), Sacks forcing,
Mathias forcing, etc. It is readily seen that the class of wide posets is closed under finite products,
finite lottery sums, provided that the factors are all of the same size, and finite iterations (although
some care is needed in the specific presentation of the iteration).

The second author went on to show that, given posets P0 and P1 that are wide and of equal
size in M , there are generic filters G0 and G1 such that the extensions M [G0] and M [G1] do not
amalgamate. Let us now generalize this argument to prove a version of Theorem 2.6 in the setting
of wide posets.

3.2. Theorem. Suppose that a family of sets A is defined in M by finite obstacles on a set I and
{Pi | i ∈ I} ∈M is a family of wide posets in M , all the same size κ ≥ |I|. Then there are generic
filters Gi ⊆ Pi over M with the following properties:

(1) If A ∈ A then
∏
i∈AGi is generic for

∏
i∈A Pi over M .

(2) If B ∈M , B ⊆ I and B /∈ A, then the family {M [Gi] | i ∈ B} does not amalgamate in the
generic multiverse.

(3) If A0, A1 ∈ A then M [
∏
i∈A0 Gi] ∩M [

∏
i∈A1 Gi] = M [

∏
i∈A0∩A1 Gi].

The products above are to be seen as subposets of the product
∏
i∈I Pi which may use supports from

an arbitrary ideal in M extending the finite ideal on I.

Proof. For X a subset of I we write PX =
∏
i∈X Pi and similarly for GX . For each i ∈ I we fix

an enumeration of Pi in order type κ in M . Since the Pi are wide in M , we can also find for each
p ∈ Pi a maximal antichain Z(p) ⊆ Pi below p of size κ, together with an enumeration in order
type κ. Finally, fix a catastrophic real z for M .

As in the blockchain construction of section 2 we will undertake a construction of a descending
sequence of conditions pn = 〈pin | i ∈ I〉 ∈

∏
i∈I Pi whose restriction to each coordinate i will

generate the generic filter Gi. We will be guided by some enumeration of all the relevant parameters
in order type ω. We arrange matters such that at each stage of the construction we are given the
following: two sets A0, A1 ∈ A, a dense subset D ⊆ PA0 in M , and a PA0-name σ ∈ M and
a PA1 -name τ ∈ M , both for subsets of M [ĠA0∩A1 ] (of course, we want to run through all the
possible combinations of these parameters).

Before we start the construction, let us briefly describe the idea. The key property of the wide
posets Pi will be that, given a condition p ∈ Pi, a generic Gi containing p picks out a unique
element of the antichain Z(p), which amounts to, in view of our fixed enumeration, a particular
ordinal below κ. We could, for example, use this mechanism to encode the bits of the catastrophic
real z as we were building our sequence of conditions pn. This approach would be similar to what
we did in the proof of Theorem 2.6. However, since the structure of the posets Pi may be more
complicated than that of Cohen forcing, we might, along the way, lose track of the coding points—
those conditions whose corresponding antichains we should consult to decode z. To remedy this,
we will keep track of the coding points used at each stage and code not only the catastrophic real
z but also the next set of coding points. In addition, at various points in the construction we
will want to record one of three additional special symbols (say ], [, and \) which will serve to
mark which case of the construction we are in. These special symbols will be used in the decoding
process to signal which generic to look at to recover further information.

We start the construction by letting pi0 be the top condition of Pi for each i ∈ I. Now suppose
that we have constructed pn and are given A0

n, A
1
n ∈ A, a dense D ⊆ PA0

n
, and names σ and τ .

Let B0
n and B1

n be the sets of the first n many elements of I \A0
n and I \A1

n, respectively, in some
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fixed enumeration of I in V in order type ω. We also assume that we have, along the way, built
a sequence of conditions cm ∈ PI which are the coding points used at stage m. To be precise, for
each m < n and each i ∈ B0

m we assume that pim+1 ≤ cim is the condition in the antichain below

cim whose index codes: the sets B0
m+1 and B1

m+1, the bit z(n), and the sequence 〈cjm | j ∈ B0
m+1〉

(note that all of these are essentially finite subsets of κ, so it makes sense to code them together by
a single ordinal below κ). If we additionally assume that pim+1 = cim for i /∈ B0

m, then by knowing
cm�B0

m
and a generic Gi for some i ∈ B0

m, we can recover pm+1�B0
m+1

.

Returning to our construction at stage n, it remains for us to build cn ≤ pn in such a way that
cn�B0

n
will be recoverable from pn�B0

n
and a well-chosen generic. First of all, we can find qn ≤A0

n
pn

such that qn�A0
n
∈ D and qn decides whether σ ∈M [ĠA0

n∩A1
n
]. We now have a small tree of cases

to consider.

Case 1: Suppose that qn 
 σ ∈ M [ĠA0
n∩A1

n
]. In this case we just let cn ≤ qn be the extension

obtained by coding the symbol ] below the conditions on the coordinates i ∈ B0
n and keeping the

other coordinates. In particular, since B0
n is disjoint from A0

n, once we know pn�B0
n

and a generic

Gi for some i ∈ B0
n, we can recover cn�B0

n
.

Case 2: Suppose that qn 
 σ /∈ M [ĠA0
n∩A1

n
]. In this case we will attempt to find a condition cn

which forces σ 6= τ . We can apply Lemma 2.8 and get a name ρ for an element of M [ĠA0
n∩A1

n
]

such that no (A0
n ∩A1

n)-extension of qn decides whether ρ ∈ σ. It will be this ρ that we will try to
use to distinguish σ and τ in the extension. We find ourselves in one of two subcases.

Case 2a: Suppose that qn decides whether ρ ∈ τ . We then let q′n ≤A0
n
qn be any extension which

decides ρ ∈ σ in the opposite way. After this we again let cn ≤ q′n be the extension obtained
by coding the symbol ] below the conditions on the coordinates i ∈ B0

n and keeping the other
coordinates. Just as before, knowing pn�B0

n
and some Gi for i ∈ B0

n allows us to recover cn�B0
n
.

Case 2b: Suppose that qn does not decide whether ρ ∈ τ . We first find p′n ≤A0
n
qn which forces

ρ ∈ σ and then define q′n ≤ p′n by coding the sequence p′n�B1
n
, together with the symbol [, below

each condition p′in for i ∈ B0
n and fixing the other coordinates. Observe that, at this point, we can

recover q′n�B0
n∪B1

n
from pn�B0

n
and some generic Gi for i ∈ B0

n. But we are not yet finished, and we
must ask whether we can commit to forcing ρ 6∈ τ or whether we have to roll back some mistakes.

Case 2b (i): Suppose that q′n 6
 ρ ∈ τ . In this case we find p′′n ≤A1
n
q′n which forces that ρ /∈ τ and

then let cn be the condition obtained from p′′n by coding the sequence p′′n�B0
n

below the conditions

on the coordinates i ∈ B1
n and fixing the other coordinates. Note that cn�B0

n
can be recovered from

q′n�B1
n

and some generic Gi for i ∈ B1
n.

Case 2b (ii): Suppose that q′n 
 ρ ∈ τ . Recall that we also have q′n 
 ρ ∈ σ, so this does not seem
to be a good way to go if we want to end up forcing σ 6= τ . So we are going to try to undo past
mistakes and work instead with the condition q′′n = qn�A0

n\A1
n
∪ q′n�I\(A0

n\A1
n)

. The key property
of this condition is that it still forces ρ ∈ τ but it does not decide ρ ∈ σ since it is essentially
an (A0

n ∩ A1
n)-extension of qn. Therefore we can find p′′′n ≤A0

n
q′′n which forces ρ /∈ σ and then

let cn ≤ p′′′n be the condition obtained by coding the sequence p′′′n �B0
n
, together with the symbol \

(cancelling out the [ from before), below the conditions on the coordinates i ∈ B0
n and keeping the

other coordinates. Then we can recover cn�B0
n

from q′n�B0
n

and some generic Gi for i ∈ B0
n.

This finishes the construction of cn and pn+1. It still remains for us to show that the generic
filters Gi obtained this way have the desired properties. Of these, property (1) is easiest, since it is
clear that we have ensured genericity by running through all the dense sets corresponding to any
particular A ∈ A. Property (3) is also not difficult to see. Suppose that we are given an element
x ∈M [GA0 ] ∩M [GA1 ] for some A0, A1 ∈ A and we wish to show that x ∈M [GA0∩A1 ]. Let σ and
τ be the PA0- and PA1 -names for x, respectively. We may assume, by ∈-induction, that x is in
fact a subset of M [GA0∩A1 ]. These two names were considered at some stage of the construction,
at which time one of two things occurred: Either it was forced at that stage that σ ∈M [GA0∩A1 ],
or we arranged matters so that it was forced that σ 6= τ . But the second option could not have
happened, since the two names both evaluate to x. It therefore follows that x ∈M [GA0∩A1 ].
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Finally we turn to property (2). Suppose that we have a set B ∈ M which does not belong to A
and we wish to show that the family {M [Gi] | i ∈ B} does not amalgamate. Since A is defined
by finite obstacles, it suffices to show this for the finite obstacle sets B. We will argue that, given
the filter GB and some parameters in M , we can recover the catastrophic real z, which prevents
amalgamability. Since B is finite, there is some n so that for all larger m we have B ⊆ A0

m ∪ B0
m

and B ⊆ A1
m ∪B1

m. Note that also, since A is closed under subsets, the intersections B ∩B0
m and

B ∩ B1
m are nonempty. We may assume that we already know the part of z up to n, as well as

B0
n, B

1
n, and pn�B0

n
, and we are looking to recover z(n), B0

n+1, B
1
n+1, and pn+1�B0

n+1
.

Fix indices i0 ∈ B ∩B0
n and i1 ∈ B ∩B1

n. First we check to see what symbol is coded at the place

where the filter Gi0 meets the antichain Z(pi
0

n ). If we see a ], we know that we were either in Case
1 or 2a at this stage of the construction and we can immediately recover cn�B0

n
, and this condition,

together with Gi0 again, codes all the information we required. Similarly, if we see a [, we know
that the construction went through Case 2b. We should compute q′n�B0

n∪B1
n
, as described above,

and see whether the [ is followed by a \: if so, we know that we proceeded through Case 2b (ii)
and we use Gi0 to recover cn�B0

n
, and if not, we proceeded through Case 2b (i) and we use Gi1 in

the same way. �

In the exact same way as we proved Theorem 2.9 using Theorem 2.6, we can use Theorem 3.2 to
prove the following.

3.3. Theorem. Let I,A, and the posets Pi be as in Theorem 3.2. Then (A,⊆) ∗-embeds into the
generic multiverse given by products of the posets Pi (and mapping ∅ to M).

4. (Non-)Amalgamability in the Class-Generic Multiverse

In this section we turn our attention to the context of different possible collections of classes for
a fixed countable model of zfc, the original context in which Mostowski [Mos76] was interested.
Specifically, he was interested in the structure of models of Gödel–Bernays set theory whose first-
order parts are all the same countable transitive model of zfc. He investigated the possible patterns
of (non)amalgamability of these models. Just as we generalized his argument in the set forcing
case, we can do the same for class forcing. The results of this section are an adaptation of the
results about wide forcings in section 3.

We will treat models of second-order set theory as two-sorted structures (M,X ,∈(M,X )) with sets
or first-order part M and classes or second-order part X . We will suppress writing the membership
relation, referring simply to (M,X ). We may always assume that X is a collection of subsets of
M . If M is transitive with the true ∈ as its membership relation, then so is X and the set–set and
set–class membership relations of (M,X ) are the true ∈.

4.1. Definition. Gödel–Bernays set theory gbc with the axiom of Global Choice is the second-
order set theory axiomatized by zfc for sets, Class Extensionality, Class Replacement, Global
Choice (in the form there is a class bijection Ord → V ), and Elementary Comprehension (i. e.
Comprehension for formulae with only set quantifiers (but allowing class parameters)). Dropping
Powerset from the axioms for sets gives the theory gbc−.2 �

To make the argument work we will need a slight strengthening of gbc in the ground model.

4.2. Definition. Elementary Class Choice ecc is the schema asserting that if for every set there
is a class witnessing some first-order property, then there is a single class coding witnesses for
each set. Formally, let φ(x, Y,A) be a first-order formula, possibly with a set or class parameter
A. The instance of ecc for φ(x, Y,A) asserts that if for every set x there is a class Y such that
φ(x, Y,A) then there is a class C such that for every set x we have that φ(x, (C)x, A) holds, where
(C)x = {y : (x, y) ∈ C} is the x-th slice of C. �
2 In the absence of Powerset we have that Collection is stronger than Replacement [Zar96]. We want gbc− to be

axiomatized with Collection, as the version with only Replacement is badly behaved [GHJ16]. Also, the various

forms of Global Choice require Powerset to prove their equivalence. Without Powerset, the existence of a class

bijection Ord → V is the strongest. We will need this strongest form of Global Choice in Theorem 4.7.
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4.3. Theorem (Gitman–Hamkins [GH]). Kelley–Morse set theory3 does not prove ecc.

4.4. Theorem (Williams [Wil18, Corollary 2.48]). If (M,X ) is a model of gbc− + etr then
there is Y ⊆ X second-order definable such that (M,Y) is a model of gbc− + etr + ecc.4 As a
consequence, the following pairs of theories are equiconsistent:

• gbc + etr and gbc + etr + ecc.
• gbc− + etr and gbc− + etr + ecc.

Next we need a definition of wide forcing specialized to the context of class forcing.

4.5. Definition. A class forcing notion P is Ord-cc (synonymously, has the Ord-chain condition)
if every antichain of P is set-sized. �
4.6. Definition. A class forcing notion P is Ord-wide if for every condition p ∈ P we have that P
restricted below p is not Ord-cc. That is, below any condition in P there is a proper-class-sized
antichain. �

For the generic multiverse of a model of second-order set theory we want to confine the collection of
forcing notions we allow to only the pretame forcings.5 The reason is two-fold. First, pretameness
is equivalent to the preservation of gbc− [Sta84, Fri00]. Indeed, if a class forcing is not pretame
then any forcing extension by it will fail to satisfy Replacement [HKS18]. This is problematic
for nonamalgamability arguments, as it is Replacement which allows us to argue that a forcing
extension of M cannot contain a catastrophic real for M . Second, gbc is not strong enough to
prove that every nonpretame forcing notion admits a forcing relation [HKL+16]. With this in
mind, say that the class-generic multiverse of a countable transitive model of second-order set
theory (M,X ) is the smallest collection of models containing (M,X ) and closed under grounds
and extensions by pretame class forcings. Similar to the set-forcing case, a family of universes
in the generic multiverse amalgamates if there is some universe in the generic multiverse which
contains all of them.

Given a class forcing notion P ∈ X and a filter G ⊆ P generic over (M,X ), meaning that G meets
every dense subclass of P in X , we will write (M,X )[G] for the generic extension of (M,X ) by
G. This is defined in the usual way, with the sets of the extension being the interpretations of set
P-names in M and the classes of the extension being the interpretations of class P-names in X .
If P is pretame then it follows from the preservation of gbc− that the sets in the extension are
precisely the classes which are subclasses of sets.

We wish to emphasize that the geology for the class-generic multiverse is not as nice as that for
the set-generic multiverse. For example, to argue in Lemma 1.2 that inclusion in the (set) generic
multiverse is the same as being a forcing extension, we appealed to the intermediate model theorem.
But it is a folklore result that the intermediate model theorem can fail for (tame) class forcings.
Nevertheless, these difficulties will not concern us here. We are looking only at forcing extensions
of a fixed model, not forcing extensions of grounds of forcing extensions of ... And our method of
ensuring nonamalgamability—coding a catastrophic real—rules out amalgamability in the broader
generic multiverse, not just among forcing extensions of a fixed model.

The primary concern is with models of gbc, but our argument nowhere uses the axiom of powerset,
so we state the theorem in a more general setting.

4.7. Theorem. Assume (M,X ) is a countable transitive model of gbc− + ecc, meaning that both
M and X are countable, and suppose a family of sets A is defined in (M,X ) by finite obstacles on
a class I ∈ X . Let {Pi | i ∈ I} ∈ X be a family of Ord-wide forcing notions in (M,X ).6 Then
there are Gi ⊆ Pi generic over (M,X ) satisfying the following three properties.

3 Recall that Kelley–Morse set theory is axiomatized by the axioms of gbc plus the full Comprehension schema for
all formulae, even those with class quantifiers.

4 See [GH17] for a definition of Elementary Transfinite Recursion etr, originally due to Fujimoto [Fuj12]. The
theory gbc + etr is stronger than gbc in consistency strength, but weaker than Kelley–Morse set theory and

indeed weaker than gbc + Π1
1-Comprehension.

5 See [Fri00] for a definition of pretameness.
6 To clarify: the Pi are proper classes so the literal collection of all of them is too high in rank to be a class. But

we can code this collection as a single class via pairs, say using the class C = {(i, p) : i ∈ I and p ∈ Pi} so that
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(1) If A ∈ A, then
∏
i∈AGi is generic for

∏
i∈A PA over (M,X ).

(2) If B ⊆ I is in X with B 6∈ A, then the family {(M,X )[Gi] | i ∈ B} does not amalgamate
in the generic multiverse.

(3) If A0, A1 ∈ A then M [
∏
i∈A0 Gi] ∩M [

∏
i∈A1 Gi] = M [

∏
i∈A0∩A1 Gi].

The products above are to be seen as subposets of the product
∏
i∈I Pi, which may use supports

from any ideal in (M,X ) which extends the finite ideal.

Proof sketch. This is proved much the same as Theorem 3.2. We give a sketch of the proof here,
making clear where ecc and the strong form of Global Choice are used.

Fix the following notation: For classes A ⊆ I let PA =
∏
i∈A Pi and similarly for GA. By Global

Choice fix an enumeration of M in order type OrdM . Using ecc, pick for each p ∈ P a proper-
class-sized (= OrdM -sized) maximal antichain Z(p) ⊆ Pi below p. Externally to (M,X ), fix z
a catastrophic real for M , an enumeration of I in order type ω, and an enumeration of all the
relevant parameters from M in order type ω. We will build a descending ω-sequence of conditions
pn = 〈pin | i ∈ I〉 ∈ PI whose restrictions to the i-th coordinate will generate Gi. At each stage in
the construction we deal with A0, A1 ∈ A, a dense subclass D of PA0 in X , a PA0 -name σ ∈ X ,
and a PA1 -name τ ∈ X , both for subsets or subclasses of (M,X )[GA0∩A1 ].

As before, each Gi is determined by a descending sequence of conditions 〈pi | i ∈ ω〉. We ensure that
GA is generic for A ∈ A by meeting every dense subclass. And the key point of our construction
will be to find coding points which can then be used to guide the decoding process if we are given
generics Gi for all i in some bad subset of I which is not in A. In light of the global well-order, any
element of M can be coded by the index of a condition in the proper-class-sized antichain Z(p)
below p. (This uses that the global well-order has ordertype Ord.) As before, we start with pi0
being the top condition in Pi. And the construction proceeds from stage n to stage n+ 1 the same
as before, breaking down into the same tree of cases.

Having carried out the construction, we can verify (1), (2), and (3) the same as before. �

For specific class forcings, we may get the same result assuming neither Global Choice nor Ele-
mentary Class Choice. Suppose, as an example, that each Pi is Add(Ord, 1), the class of functions
from an ordinal to {0, 1}, ordered by reverse inclusion. Then we can code the catastrophic real
directly, as in the argument for theorem 2.1. Indeed, this was the forcing notion Mostowski used
in his original investigations.

And once again, the exact same way as we proved Theorem 2.9 using Theorem 2.6, and Theorem 3.3
using Theorem 3.2, we can derive the following as a corollary.

4.8. Corollary. Let (M,X ), I, A, and the posets Pi be as in Theorem 4.7. Then (A,⊆) ∗-embeds
into the class-generic multiverse of (M,X ) given by products of the posets Pi (and mapping ∅ to
(M,X )).

5. Surgery and the Mutable Blockchain

In this section we wish to revisit the results from section 2 and present an alternative proof of
Mostowski’s Theorem 2.1. While the obtained result is substantially the same, we believe that the
method we employ, surgery, is quite powerful and can be used to answer other questions in the area.
The main difference between Mostowski’s argument (and the derived blockchain construction) and
the surgery method we are about to give is that the blockchain argument creates the required
generic objects (and thus the ∗-embeddings) completely anew, whereas with the surgery approach
we will be able to start with generic objects given in advance and modify them in such a way that
they realize the desired ∗-embedding.

Pi = {p : (i, p) ∈ C} is the i-th slice of C. And we must do something similar for sequences of classes, as we will

use below.
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We remind the reader that, in this section, we work exclusively with the version of Cohen forcing
Add(ω, 1) whose conditions are finite binary strings. We will comment later why other presentations
of this forcing notion are not suitable.

The following definition introduces a useful way of surgically modifying one function to match
another one on a subset of its domain.

5.1. Definition. Let f and g be (partial) functions defined on ω and let A ⊆ dom(f) have the
same cardinality as dom(g). Let e : A → dom(g) be the unique order-preserving bijection. The
graft of g onto f on A is the function f oA g, defined on dom(f) as:

(f oA g)(x) :=

{
f(x) x /∈ A
g(e(x)) x ∈ A

In other words, the graft f oAg is the result of replacing the values of f on A with the corresponding
values of g. If A = dom(g), we omit it and just write f o g. �

5.2. Definition. Let p be a condition in Add(ω, 1), let D be a dense open subset of this poset, and
let n be a natural number. We say that p is (n,D)-immune if any condition q satisfying q(i) = p(i)
for all i ≥ n is in D. In other words, a condition is (n,D)-immune if any modification of it on the
coordinates below n results in a condition in D.

Given conditions p and q, we say that q is a D-immunization of p if q ≤ p and q is (|p|, D)-
immune. �

We should note that any (n,D)-immune condition is itself already in D.

5.3. Proposition. Let D be a dense open subset of Add(ω, 1). Any condition p ∈ Add(ω, 1) has a
D-immunization.

Proof. Fix a condition p. Since we are working with conditions that are binary sequences, there are
only finitely many conditions of length |p|, and we enumerate them as 〈qi | i < N〉. We will build
a descending sequence of increasingly immune conditions pi for i ≤ N . Start by letting p0 := p. In
general, given pi, we first let p̄i+1 be an extension of pi oqi inside D and then define pi+1 := p̄i+1 op.
It is then clear that pN is a D-immunization of p. �

The existence of immunizations is the main reason why we need to work with the binary sequence
version of Cohen forcing in this section. Working instead with conditions as finite sequences of
natural numbers, for example, it is not hard to come up with a dense open set D such that no
condition at all is even (1, D)-immune.

The utility of immune conditions is that they admit limited amounts of surgery, while remaining
in a given dense set. The plan is then to build a generic filter from a sequence of increasingly
immune conditions with the hope that the resulting Cohen real will be able to withstand surgery
on unboundedly many coordinates while remaining generic. As a simple example, we give the
following result, which amounts to an improved version of Proposition 2.2.

5.4. Theorem. Let c and d be mutually generic Cohen reals over M and let g : ω → 2 be a function
(not necessarily in M). Then c od g is a Cohen real over M .

Proof. Let D ∈ M be a dense open subset of Add(ω, 1). We wish to check that c′ := c od g meets
D. Consider the following subset of Add(ω, 2):

E := {(p, q) | for some k < ω, p is (k,D)-immune and q has 0s on the interval [k, |p|)}
The set E is dense in Add(ω, 2). This is because, given any condition (p, q) in this poset (where
we may assume that |p| = |q|), we can simply find a D-immunization p′ of p, using Proposition 5.3
and pad q with 0s up to the length of p′.

Since E is dense, there is a pair (p, q) ∈ E such that p and q are initial segments of c and d,
respectively. Now consider p oq g, where we identify q with q−1[{1}]. This is an initial segment of
c od g, and it lies in D, since p was immune up to the last 1 of q below |p|. Therefore c od g meets
D and is truly a Cohen real over M . �
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5.5. Corollary. Let c be a Cohen real over M . Then there is another Cohen real d over M which
does not amalgamate with c.

Proof. Let d′ be a Cohen real mutually generic with c, and fix a catastrophic real z for M . By
Theorem 5.4, the real d := d′ oc z is Cohen over M . But any model containing both c and d would
be able to recover z as the bits of d on the coordinates in c, and therefore cannot be a forcing
extension of M . Thus c and d are not amalgamable. �

This corollary provides a glimpse of possible improvements to results establishing the existence
of ∗-embeddings into the generic multiverse, such as Corollary 2.10. Specifically, it hints at a
possible extension-of-embeddings phenomenon, whereby a ∗-embedding of a subposet into the
generic multiverse could be extended to a ∗-embedding of the whole poset. One is reminded of the
structure of the Turing degrees, which enjoys similar universality properties as we have shown for
the generic multiverse. The fact that the Turing degrees do exhibit the extension-of-embeddings
phenomenon, modulo an exact list of obstructions, was shown by Slaman and Soare [SS01], and it
seems likely that a similar result can be proved for the generic multiverse.

5.6. Question. Does the generic multiverse exhibit an extension-of-embeddings phenomenon?

Before we perform surgery on a family of Cohen reals to obtain a desired pattern of amalgamability,
we will have to prepare them slightly. We now describe this transformation of a family of reals,
called priming.

5.7. Definition. Let y : ω → 2 be a real. We say that i is a good point for y if y(i) = 1 and
y(i+ 1) = 0. We write G(y) := {i | i is a good point for y} and C(y) := {i+ 1 | i ∈ G(y)}.

If x, y, z are reals, we write x[z/y] := x oC(y) z. Often y will be clear from context and we will
simply write x[z].

If x0, . . . , xn−1, y are reals, the primed version of ~x with respect to y is ~x′, where

x′k(i) :=


1 i ∈ G(y)

0 i ∈ C(y)

0 i /∈ G(y) ∪ C(y) and |G(y) ∩ i| ≡ k (mod n)

xk(i) otherwise

We say that k is inactive at i if i /∈ G(y) ∪ C(y) and |G(y) ∩ i| ≡ k (mod n). �

Given reals x0, z0, . . . , xn−1, zn−1, y we will quite often abuse notation and write ~x′ for the tuple
of the primed reals x′0, . . . , x

′
n−1, and ~x[~z] for the tuple of reals x0[z0], . . . , xn−1[zn−1].

The diagram in Figure 3 represents the result of priming three reals x0, x1, x2 with respect to y.
The blank blocks represent indices where a particular column is inactive and where 0s have been
inserted. The operation x′0[z/y] then amounts to placing z onto the indicated bits of x′0 that occur
just above the all-one rows. The picture is again divided into blocks, fit between the good points of
y. As we shall see, the structure of the blocks will ensure that genericity properties of the original
reals are preserved after priming and surgery. Since the blocks are intended to accept modification
via surgery, we might describe the whole construction as the mutable blockchain.

An easy but important observation to make is that, given reals ~x and y, the primed versions ~x′

are never mutually generic Cohen reals, even if the original reals ~x were. This is because we have
ensured in the priming procedure that two consecutive all-one rows never appear, but this would
have to happen in a mutually generic family. The following lemma shows that this is essentially
the only failure of mutual genericity. If we start with mutually generic Cohen reals, then, after
priming and possibly even additional surgery, any proper subfamily of these modified reals remains
mutually generic. Moreover, this remains true even if we add some unprimed reals into the mix.

5.8. Lemma. Suppose that x0, . . . , xn−1, u, y are mutually generic Cohen reals. Let ~x′ be the
primed version of ~x with respect to y. Let A ⊂ n and fix reals w and zk for k ∈ A. Then
{x′k[zk] | k ∈ A} ∪ {u[w]} are also mutually generic Cohen reals.
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Figure 3. Priming x0, x1, x2 with respect to y

Proof. Let D be a dense open subset of Add(ω,A + 1) and fix some ` ∈ n \ A. Consider the
following subset of Add(ω, n+ 2):

E := {(~p, q, r) | ∃m < ω : (~p�A, q) is (m,D)-immune,

r has only 0s on the interval [m, |(~p�A, q)|), and

` is inactive on [m, |(~p�A, q)|)}
A similar argument to the one in the proof of Theorem 5.4 shows that E is dense. Therefore (~x, u, y)
meet E. As in that previous proof, it again follows by an immunity argument that ((~x′�A)[~z], u[w])
meet D. �

Using essentially the same idea, we can extend the lemma to deal with a whole matrix of mutually
generic Cohen reals, with each row being primed with respect to a different real. We omit the
proof, since it is quite similar to the one just given.

5.9. Lemma. Suppose that xj0, . . . , x
j
nj−1, u, y

j , v for j < J are mutually generic Cohen reals. Let

(~xj)′ be the primed version of ~xj with respect to yj. Let Aj ⊂ n and fix reals w and zjk for k ∈ Aj.
Then {(xjk)′[zjk/y

j ] | k ∈ Aj} ∪ {u[w/v]} are also mutually generic Cohen reals.

Before we give the main theorem of this section, let us present an easier version that we will use
as a building block in the coming proof.

5.10. Theorem. Let n be a natural number and let A ⊆ n. Let y be a Cohen real over M .
Then there are amalgamable Cohen reals c0, . . . , cn−1 over M and a real z such that the family
{ck[z/y] | k ∈ B} is nonamalgamable if A ⊆ B and mutually generic otherwise.

Proof. Let x0, . . . , xn−1 be mutually generic Cohen reals over M [y] and let z be catastrophic for
M . Let {ck | k ∈ A} be the primed versions of {xk | k ∈ A} with respect to y and let ck := xk if
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k /∈ A. The reals {ci | i < n} are Cohen over M by Lemma 5.8, and they are clearly amalgamable
since they all live in M [x0, . . . , xn−1, y]. Note that, given the set {ck[z/y] | k ∈ A}, it is simple
to decode z: Find those i for which ck[z/y](i) = 1 for all k ∈ A and recover C(y) from that
information, which then give z. Therefore, the family {ck[z/y] | k ∈ B} is not amalgamable if
A ⊆ B. On the other hand, if A * B, Lemma 5.8 implies that {ck[z/y] | k ∈ B} are mutually
generic Cohen reals. �

5.11. Theorem. Let n be a natural number. Then there are amalgamable Cohen reals c0, . . . , cn−1
over M and another real y such that, for any A ⊆ P(n) containing all singletons and closed under
subsets, there is a real zA such that {ck oy zA | k ∈ A} is amalgamable if and only if A ∈ A.

While this theorem gives a similar result as Mostowski’s Theorem 2.1, the conclusion is slightly
stronger. In particular, we now obtain a fixed finite family of reals ck which, by judicious use of
surgery, can be modified to witness any desired pattern of amalgamability. Furthermore, as will
be apparent from the proof, the real y can be chosen to be quite sparse (in terms of asymptotic
density, say), so that the “postoperative” reals will resemble the “preoperative” ones as closely as
desired.

Proof. Let {xAk , yA | k < n,A ⊆ n, |A| ≥ 2} be mutually generic Cohen reals over M . Let
{cAk | k ∈ A} be the primed versions of {xAk | k ∈ A} with respect to yA and let cAk := xAk for
k /∈ A. For each k < n let ck :=

⊕
A c

A
k be the join, obtained by interleaving bits for example; we

also let y =
⊕

A C(yA). Essentially we prepared a matrix of Cohen reals, with one row for each
subset A ⊆ n, and priming the reals in the A-th row with indices in A. We claim these ck, the
joins of the columns of this matrix, are as desired.

Let us first see that each ck is Cohen over M . Let A0, A1, . . . , AN be an enumeration of subsets
of n of size at least 2. Recall that {xAk , yA | A ⊆ n, |A| ≥ 2} are mutually generic over M . It then

follows from Lemma 5.8 that cA0

k is Cohen over M [xA1

k , yA1 , . . . , xAN

k , yAN ]. Notice that c
Aj

k is in

this model for each j > 0. Similarly, cA1

k is Cohen over M [xA2

k , yA2 , . . . , xAN

k , yAN ], and this model

contains all of the reals c
Aj

k for j > 1. Repeating this step, we see that the reals cA0

k , . . . , cAN

k are
mutually generic over M . Therefore their join ck is also Cohen over M . Furthermore, as we have

said, the model M [x
Aj

k , yAj | j ≤ N ] has all of the reals c
Aj

k , and therefore also ck. Therefore all
of the reals ck appear in the model M [xAk , y

A | k < n,A ⊆ n, |A| ≥ 2], and are thus amalgamable.

Now fix a family A as in the statement of the theorem. For each A ∈ P(n) \ A there is, by
Theorem 5.10, a real zA such that {cAk [zA/yA] | k ∈ B} is nonamalgamable if A ⊆ B and mutually
generic otherwise. For A ∈ A let zA ≡ 0. Now let zA :=

⊕
A z

A, so that ck oy zA =
⊕

A c
A
k [zA/yA].

If A /∈ A then {ck oy zA | k ∈ A} is not amalgamable, since from these reals we could compute
{cAk [zA/yA] | k ∈ A} and we know these reals are not amalgamable.

Now consider the situation when A ∈ A. Let us write MA = M [xDl , y
D | D ∈ A, l ∈ A]. On

the one hand, note that for any B ∈ A and any k ∈ A we have cBk [zB/yB ] ∈ MA. On the other
hand, applying Lemma 5.9 over MA shows that, since B \ A 6= ∅ for any B /∈ A, the reals in
{cBk [zB/yB ] | B /∈ A, k ∈ A} are mutually generic over MA. It follows that there is a single Cohen
extension of MA containing all the reals in {cBk [zB/yB ] | B ⊆ n, k ∈ A}, and so the reals ck oy zA
are amalgamable over M . �

A simple extension of the preceding proof yields a sequence of Cohen reals c0, c1, . . . that uniformly
realizes all finite patterns of amalgamability.

5.12. Theorem. There are amalgamable Cohen reals c0, c1, . . . over M and a real y such that, for
any natural number n and any A ⊆ P(n) containing all singletons and closed under subsets, there
is a real zA such that, for any A ⊆ n, the family {ck oy zA | k ∈ A} is amalgamable if and only if
A ∈ A.

It is unclear whether the mutable blockchain argument can be modified to achieve the kind of
control over the intersections of the resulting generic extensions which would be required to obtain
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a ∗-embedding into the generic multiverse, or whether it can accommodate infinite patterns A
(compare with the modifications going from Theorem 2.1 to Theorem 2.6).

6. More Structure in the Cohen Multiverse

In this section we would like to further discuss the structure of the generic multiverse, but more
specifically restricted to those extensions which may be obtained by adding a single Cohen real.
Theorem 2.9 and Corollary 2.10 show that this structure exhibits a large degree of universality—
any finite poset ∗-embeds into it, along with certain infinite ones, and the embedding can also
be made to preserve infima. We believe these results should be seen as analogous to the many
theorems about the order structure of the Turing degrees (or even the c. e. degrees), which exhibits
a similar kind of universality (although not quite in terms of ∗-embeddings).

It turns out that there are nontrivial restrictions on the infinitary structure of the Cohen multiverse.
The second author and Venturi [Ham16, Theorem 13] showed that countable increasing chains in
this structure have upper bounds (a similar but not completely analogous result holds for the whole
generic multiverse; see the aforementioned paper and also [FHR15]).

6.1. Theorem (Hamkins–Venturi). Let C = {M [cn] | n < ω} be a family of Cohen extensions of
M such that every finite subfamily of C has a least upper bound in the Cohen multiverse. Then C
is amalgamable in the Cohen multiverse.

On the other hand, ∗-embeddings, as we have defined them, do not capture this infinitary behaviour
very well. For example, the reader will quickly convince herself that the inclusion of ω into ω+1 is
a ∗-embedding. Moreover, any ideal on a set X (such as the ideal of finite subsets) ∗-embeds into
the full power set P(X), regardless of which (infinitary) upper bounds exist in the ideal. It follows
that any ideal on ω ∗-embeds into the Cohen multiverse, even though the ideal will typically not
have the finite-obstacle property that we required in our theorems.

To better explore this aspect of the structure of the Cohen multiverse, one might wish to work
with a stronger form of ∗-embedding.

6.2. Definition. Let f : P → Q be a ∗-embedding between posets. We say that f is a strong
∗-embedding if, whenever X ⊆ P does not have an upper bound in P , its image f [X] also does not
have an upper bound in Q. �

It is easy to see that if A is a family of sets as in Theorem 2.6 then any ∗-embedding of A already
is a strong ∗-embedding. Therefore the ∗-embeddings obtained in Theorem 2.9 and Corollary 2.10
can be taken to be strong ∗-embeddings. On the other hand, it follows from Theorem 6.1 that the
finite-obstacle property is a necessary condition for a family A to strongly ∗-embed into the Cohen
multiverse in any way similar to what we have seen.

6.3. Proposition. Let I ∈ M and let A ∈ M be a family of subsets of I, closed under subsets in
M . Suppose that A strongly ∗-embeds into the Cohen multiverse via a ∗-embedding that preserves
finite suprema. Then A is defined by finite obstacles in M .

Note that the ∗-embeddings we constructed in section 2 (and any embedding which, like those,
is based on arrangements of product generics) were strong ∗-embeddings and preserved finite
suprema.

Proof. Let f be the strong ∗-embedding of A into the Cohen multiverse. Fix a set B ∈ M all of
whose finite subsets are in A. We aim to show that B is also in A. Since M is countable, there
are, from the point of view of V , only countably many finite subsets of B. Let C be the range of
f restricted to the finite subsets of B. Note that A is closed under unions of finite subsets of B,
so, since f preserves suprema, C is closed under suprema. The family C is countable, since M is
countable, therefore it follows from Theorem 6.1 that C is amalgamable in the Cohen multiverse.
By the definition of a strong ∗-embedding we can thus conclude that B ∈ A. So any subset of I
not in A must contain a finite set not in A, and thus A is defined by finite obstacles. The set of
obstacles can be taken as the ⊂-minimal subsets of I not in A, and this set is in M . �
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Continuing with the comparison of the Cohen multiverse and Turing degrees, we now turn to the
existence of suprema and infima. First of all, it is an easy consequence of the intermediate model
theorem that we can find a supremum of finitely many models in the generic multiverse as long as
they are amalgamable.

6.4. Proposition. A finite subset of the generic multiverse has a supremum if and only if it is
amalgamable.

Proof. Consider two models M0 and M1 in the generic multiverse. It follows from the ddg (see
section 1) that both of these two models are forcing extensions of a common ground model. We may
assume without loss of generality that this common ground model is just M and write M0 = M [G0]
and M1 = M [G1] for some M -generic G0 and G1. We may also assume that G0 and G1 are sets
of ordinals. Now suppose that M0 and M1 are amalgamable with upper bound M2 and consider
the model M(G0, G1) =

⋃
α<OrdM L(VMα , G0, G1)M2 . This is an inner model of M2 and it satisfies

choice since G0 and G1 are sets of ordinals and therefore easily well-orderable. It then follows from
the intermediate model theorem that M(G0, G1) is a forcing extension of M , and it is also clearly
the least upper bound for M [G0] and M [G1]. �

In contrast, it is known that countable increasing sequences of Turing degrees never have a supre-
mum and that not all pairs of Turing degrees have an infimum . These facts are usually established
by showing the existence of exact pairs of Turing degrees, and the analogous argument will show
that the same holds in the Cohen multiverse.

6.5. Definition. Let E be a family of forcing extensions of M . We say that two forcing extensions
M [G] and M [H] form an exact pair for E if each of them is an upper bound for E , and any model
in the generic multiverse below both M [G] and M [H] is below some model in E . �

6.6. Theorem. Suppose that M [c0] ⊆M [c1] ⊆ . . . is a countable tower of Cohen extensions of M .
Then there are Cohen extensions M [d0] and M [d1] forming an exact pair for this tower.

Proof. First we replace the Cohen reals cn with a different family c′n giving the same models, but
with the additional property that any finitely many of the c′n are mutually generic. We begin by
letting c′0 = c0. By the intermediate model theorem, M [c1] is a forcing extension of M [c0] by a
quotient of the forcing Add(ω, 1). But any such quotient is itself equivalent to Add(ω, 1) and so
there is a Cohen real c′1 over M [c0] = M [c′0] such that M [c1] = M [c′0, c

′
1]. Continuing in this way

we can find all of the reals c′n as required.

We will build the exact pair by filling in two ω-by-ω matrices with 0s and 1s in ω many steps.
Throughout the construction we will maintain the requirement that, in each matrix, finitely many
of the leftmost columns have been completely filled and the n-th such column differs at most
finitely much from the corresponding real c′n, and that beyond these columns the matrix is empty.
In particular, at any stage of the construction, the matrices will essentially consist of finitely many
mutually generic Cohen reals.

In our construction we will run through a fixed enumeration of all dense subsets of Add(ω, ω), as
well as all pairs of Add(ω, ω)-names for reals in M . So suppose that we are at some stage of the
construction and we are handed a dense set D and a pair of names σ and τ . Suppose that, in each
matrix, the first N many columns have been filled. Since these columns are mutually generic, they
meet the projection of D onto the first N many coordinates. It follows that we can extend each
matrix by finitely many bits to meet the whole dense set D. Now consider the two names σ and
τ , or rather, consider the two Add(ω, ω \ N)-names σ′ and τ ′ obtained by partially evaluating σ
and τ by the first N columns of the respective matrices. Let p and q be the finite parts of the
two matrices, seen as conditions in Add(ω, ω \ N). If there is a number k ∈ ω such that there
are extensions p′ ≤ p and q′ ≤ q which force ǩ ∈ σ′ and ǩ /∈ τ ′ (or vice versa), respectively, we
extend our matrices by these conditions; otherwise we do nothing. Note that if such a k does not
exist then p and q already decide all formulas ǩ ∈ σ′ and ǩ ∈ τ ′ and decide them in the same way.
Finally, we consider each partially filled column in our matrices and complete it to (almost) match
the corresponding real c′n. This finishes this step of the construction.
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At the end of the construction let d0 and d1 be the reals represented by the two matrices we built.
It is clear that both of these reals are Cohen over M , since we met all the relevant dense sets in
M , and it is also clear that M [d0] and M [d1] are upper bounds for the tower we started with, since
d0 and d1 code all the reals c′n (up to finite modification). It thus only remains to show that no
models can be fit between the tower and the new pair of extensions. By the intermediate model
theorem, any putative such model would have to itself be a Cohen extension of M , so it suffices to
show that any real common to both M [d0] and M [d1] already appears at some point in the tower.
So let x be such a real and fix two names σ and τ from M such that σd0 = τd1 = x. This pair of
names was considered at some point in the construction, and we attempted at that time to ensure
that σd0 and τd1 would differ at some k. By our hypothesis there was no k like this, so, as we
argued above, the set x = σd0 = τd1 appeared already in the extension M [cN ]. �

6.7. Corollary. No countable increasing tower of Cohen extensions has a least upper bound in the
generic multiverse.

Proof. By the preceding theorem any such tower admits an exact pair M [d0],M [d1], and by defini-
tion there is no upper bound for the tower that would lie below both of these two models. Therefore
there can be no least upper bound for the tower. �

A weaker version of Theorem 6.6 was first obtained by Balcar and Hájek [BH78]; they proved that
some tower of Cohen extensions admits an exact pair (see also the elaboration by Truss [Tru78]).
Our results generalize this further to show that any countable tower of Cohen extensions admits
an exact pair and, as we are about to see, that any upper bound for a tower may be extended to
an exact pair.

6.8. Theorem. Suppose M [c0] ⊆M [c1] ⊆ . . . is a countable tower of Cohen extensions of M with
upper bound M [d0]. Then there is a Cohen real d1 over M such that M [d0] and M [d1] form an
exact pair for this tower.

Proof. We proceed as in the proof of Theorem 6.6, replacing the reals cn with the finitely mutually
generic c′n, and building the real d1 as an ω-by-ω matrix whose n-th column is almost equal to
c′n. Arguing as before, at each step we first meet a dense subset of Add(ω, ω) from M and then
consider a pair of names σ and τ for reals. The only case in which we should act is if d1 (or the
part of it that we have constructed thus far) does not decide the value of τ . In that case there is
some k ∈ ω such that our approximation of d1 does not decide k ∈ τ , and we extend it to make τ
and σd0 differ at k (note that d0 is fully generic, so σd0 is a fully fledged real). Afterwards we fill
in the nonempty columns of d1 using the given Cohen reals c′n.

The proof is finished exactly the same way as before. The constructed real is clearly Cohen over
M , and any real that can be written as σd0 = τd1 must have already been fully decided at some
initial stage of the construction and must thus appear in some extension M [cN ]. �

6.9. Corollary. For any Cohen extension M [c] there is another Cohen extension M [d] such that
these two models do not have a greatest lower bound in the generic multiverse.

Proof. Let c be a Cohen real over M , seen as an ω-by-ω matrix, and let cn be the real consisting
of the first (n+ 1) many columns of c. Then all of the reals cn are Cohen over M and they form
a tower M ⊆ M [c0] ⊆ M [c1] ⊆ . . . with upper bound M [c]. By the preceding theorem there is a
Cohen real d such that M [c] and M [d] form an exact pair for this tower. But these two models
cannot have a greatest lower bound, since each model in the tower is a lower bound for them, but,
by definition, no lower bound exists above the tower. �

Note that if d0 and d1 are an exact pair for the tower M [c0] ⊆M [c1] ⊆M [c2] ⊆ . . . , it will not in
general be the case that M [d0] ∩M [d1] =

⋃
nM [cn], even though this is true at the level of reals.

For example {x | ∃n : x =∗ cn}, the set of all finite modifications of the cn, is in both M [d0] and
M [d1] as constructed in the proof of Theorem 6.6, but is clearly not in any M [cn].

Finally, we wish to examine the relationship between the existence of suprema and infima of models
in the multiverse and mutual genericity. Two mutually generic extensions clearly have a supremum
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and, by a result of Solovay, an infimum. As we will see, neither of these two implications can be
reversed and, in fact, the existence of a supremum does not imply the existence of an infimum or
vice versa.

6.10. Theorem. There is a pair of models in the Cohen multiverse that have an infimum but do not
have a supremum, and another pair of models that have a supremum but do not have an infimum.
In particular, neither the existence of a supremum nor the existence of an infimum imply that the
two models are mutually generic (over the infimum, in the second case).

Proof. For the first part, consider two extensions M [c0],M [c1] given by Theorem 2.6 for the family
A = {{0}, {1}}. In particular, M [c0] and M [c1] do not amalgamate, so they do not have a
supremum, and their intersection is M , which implies that M is also their greatest lower bound in
the multiverse.

For the second part we use a result due to Truss [Tru78] which states that in any Cohen extension
M [c] there are two Cohen reals d, e over M such that M [d] and M [e] do not have an infimum. His
construction builds an exact pair over a tower much like we did in Theorem 6.6, but instead of
building the pair by induction and ensuring that the two generics almost agree on each column,
Truss uses a generic sequence of finite modifications on the columns of c. In the end we are left
with two models M [d] and M [e] with no infimum, but they are amalgamable and therefore have a
supremum, by Proposition 6.4. �

We can strengthen the preceding result a bit to show that not even the existence of both a supremum
and an infimum suffices for mutual genericity.

6.11. Theorem. There are Cohen extensions M [c] and M [d] which have both a supremum and an
infimum in the full generic multiverse, but which are not mutually generic over their infimum.

Proof. Let M [G] be an extension of M by the forcing to collapse (2ω)+ to be countable. Inspecting
the proof of Theorem 2.6, it is clear that that whole construction may be carried out in M [G] (with
G taking the role of the catastrophic real) to produce Cohen reals c, d ∈M [G] over M such that any
extension of M containing both c and d also contains G and that any real contained in M [c]∩M [d]
is already contained in M .7

It follows that M is the infimum of M [c] and M [d]. This is because any other lower bound above
M would have to be a forcing extension of M by a subforcing of Cohen forcing, by the intermediate
model theorem, and all such extensions are generated by a real, but we assumed that M [c] and
M [d] only have the reals of M in common. On the other hand, M [c] and M [d] clearly have M [G]
as their supremum.

However, M [c] and M [d] cannot be mutually generic. If they were, then their supremum would
also be a Cohen extension of M , which it clearly is not. �

The Cohen extensions in the preceding theorem were amalgamable in the full multiverse but not
in the Cohen multiverse. It is less clear whether the conclusion of the theorem still holds if we
require the supremum and infimum to exist in the Cohen multiverse, but we expect that it does.

6.12. Question. Let M [c] and M [d] be Cohen extensions of M with infimum M and a supremum
in the Cohen multiverse. Are M [c] and M [d] mutually generic extensions of M?

Our construction of an exact pair of Cohen reals can be carried out in a sufficiently large collapse
extension of M , and Truss showed that just a Cohen extension suffices. Both of these imply that
exact pairs can be amalgamable. On the other hand, it is not clear whether the construction can
be combined in some way with the blockchain construction to ensure nonamalgamability.

6.13. Question. Can an exact pair be nonamalgamable?

7 Some care is needed to ensure this last requirement. Instead of going through all pairs of Cohen names for subsets

of M , as in the proof of Theorem 2.6, we just go through pairs of names for reals, and there are countably many

of those in M [G].
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Finally, acknowledging the utility of exact pairs of Cohen reals, we must ask whether their existence
is a peculiar fact about Cohen forcing, or whether they can be constructed in other multiverses as
well.

6.14. Question. Do forcing notions beyond Cohen forcing also exhibit exact pairs?
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