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Abstract. This article investigates pathological behavior at the first limit stage in the sequence
of inner mantles, obtained by iterating the definition of the mantle to get smaller and smaller

inner models. I show: (A) it is possible that the ω-th inner mantle is not a definable class; and
(B) it is possible that the ω-th inner mantle is a definable class but does not satisfy AC. This

answers a pair of questions of Fuchs, Hamkins, and Reitz [FHR15].

1. Introduction

An inner model W ⊆ V is a ground if V is a set forcing extension of W . More precisely, W is
a ground if there is a poset P ∈ W and G ∈ V which is generic over W for P so that V = W [G].
Laver [Lav07] and independently Woodin [Woo11] proved that the grounds are uniformly definable
in ZFC, allowing for them to be quantified over in a first-order manner. The mantle M, first defined
and studied in [FHR15] is the intersection of the grounds. It follows from their work combined with
Usuba’s proof of the strong downward directed grounds hypothesis [Usu17] that the mantle is an
inner model of ZFC and that it is the largest set forcing-invariant inner model. Fuchs, Hamkins,
and Reitz [FHR15] produced a class forcing notion which forces the ground model to be the mantle
of the extension. In particular, this implies that the mantle is not absolute; it is consistent that
MM 6= M. As such, it is sensible to iterate taking the mantle to get a sequence of smaller and
smaller inner models.

Definition 1. The sequence of inner mantles is inductively defined as follows. The zeroth inner
mantle M0 is V. Given the η-th inner mantle Mη the (η + 1)-th inner mantle is Mη+1 = MMη

.
And for limit stages γ we define the γ-th inner mantle to be Mγ =

⋂
η<γ Mη. If η is least so that

Mη = Mη+1 say that the sequence of inner mantles has length η or, synonymously, that the sequence
of inner mantles stabilizes at η.

In previous joint work with Reitz [RW19] we showed that there are class forcing notions M(η),
uniformly definable in η, so that forcing with M(η) makes the ground model the η-th inner mantle
of the extension. This answered a question from [FHR15]. In the present article I address two
remaining questions from [FHR15].

The inductive definition of the sequence of inner mantles takes place in the meta-theory. Repeat-
edly taking the mantle of the mantle of . . . gives increasingly complex definitions, and it is far from
clear that we can uniformly define Mn for n < ω to thereby obtain that Mω is definable. Fuchs,
Hamkins, and Reitz asked whether there were a model of ZFC whose ω-th mantle is not definable.
The first main theorem of this article answers this question in the positive.

Main Theorem 2. There is a model N of ZFC so that (Mω)N is not a definable class in N , if there
is any model of ZFC. If there are transitive models of ZFC then we may take N to be transitive.
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Observe that if Mω is not a definable class then the sequence of inner mantles cannot stabilize
before ω.

As remarked above, the mantle is an inner model of ZFC and thus if Mη |= ZFC then so does
Mη+1. It is straightforward to see that limit stage inner mantles, provided they are definable
classes, must satisfy ZF.

Lemma 3. Suppose 〈Wi : i < λ ∈ Ord〉 is a definable decreasing sequence of inner models of ZF,
where the tail sequence 〈Wj : i < j < λ〉 is definable in each Wi. Then W =

⋂
i<λWi is an inner

model of ZF. In particular, if γ is a limit ordinal and Mγ is a definable class so that Mη |= ZFC for
all η < γ then Mγ is an inner model of ZF.

Proof. It is immediate that W is transitive, contains all ordinals, and is closed under the Gödel
operations. It is easy to check that W is almost universal, meaning that if A ⊆ W is a set then
there is B ∈ W which covers A. Namely, let B = Vξ ∩W where A ⊆ Vξ. This B is definable
because the sequence 〈Wi : i ∈ I〉 is definable. And B ∈ Wi for all i < λ because the tail of the
sequence is definable in Wi. This establishes that W is an inner model of ZF, as desired �

Is this result the best possible? Can we prove that limit stage inner mantles must satisfy Choice?
The second main theorem of this article answers this question negatively.

Main Theorem 4. There is a model N of ZFC whose ω-th inner mantle is definable, but (Mω)N 6|=
AC, assuming there is any model of ZFC. If transitive models of ZFC exist, then N may be taken
to be transitive.

The reader should compare these results to analogous results about the iterated HOD sequence.
Similar to the sequence of inner mantles, this sequence is obtained by iterating the definition of
HOD. Harrington (in unpublished work) established the HODω analogue of Main Theorem 2
and McAloon [McA74] established the HODω analogue of Main Theorems 4. The reader who is
interested in these classical results is encouraged to consult the treatment by Zadrożny [Zad83].
Indeed, Zadrożny’s article was a key point of inspiration for the current article, and the techniques
herein are an adaptation of the methods from the HOD context to the mantle context.

This article is structured as follow. First is a section surveying some methods for coding sets in
inner mantles, which will be used to establish the main theorems. Next is a section establishing
Main Theorem 4, followed by a section establishing Main Theorem 2. These last two sections are
independent, and the reader who is only interested in one of the two main results may freely skip the
other. I end with a very short section conjecturing how the work in this paper might be improved.

2. Coding sets into inner mantles and tree iterations

I this section I discuss the basic method for ensuring that a set appears in the desired inner
mantles. This will be the foundation for the main results of this article.

The models considered in this article will be extensions of L by adding Cohen sets. The most
basic coding one might use is what one might call simple Cohen coding, where a set of ordinals x
is coded by the pattern of which cardinals have a subset which is Cohen generic over L. Namely,
consider a set of ordinals x without a maximum.1 Say that x is simple Cohen coded at α if for
all i < λ = supx we have that α+i contains a subset Cohen generic over L if and only if i ∈ x.
Suppose we start in a ground model V where the interval [α, α+λ) is clean for coding, meaning

1If supx ∈ x, then x is definable from x∪{supx+ω+n : n ∈ ω}, so this assumption is harmless for our purposes.



THE ω-TH INNER MANTLE 3

that no cardinal in the interval contains a subset Cohen generic over L. Then we can force x to be
Cohen coded at α via the full support product of AddL(α+i, 1) for i ∈ x.

To ensure that we do not accidentally code too much2 when we do Add forcings in this paper they
will always be as defined in L, even if we are forcing over an extension of L. I wish to emphasize,
however, that while each iterand is a forcing from L, the entire iteration will not be from L. This
suffices for our coding purposes, because we code things by the locations of Cohen generics, not by
the generics themselves. In this article, all models will be extensions of L in which all cardinals are
preserved. In this context, AddL(α, 1) is always <α-distributive, as can be seen by an easy covering
argument lifting the distributivity from L to V.

For later arguments it will be convenient to be able to make the move from knowing that
the individual Cohen generics used for coding show up in an inner model to knowing that the
entire sequence of Cohens is definable in the inner model. For this purpose we make use of a
more complicated coding method, which I will call Cohen coding. This coding method will use an
iteration of simple Cohen coding to ensure the generics are self-encoded. Let me begin by describing
the Cohen coding forcing CC(x) which codes a set x of ordinals, with λ = supx 6∈ x, starting at a
cardinal α. This coding is done via a full-support length ω iteration.

• At stage 0, do simple Cohen coding starting at α+ to code x. This produces a λ-sequence
〈ci : i ∈ x〉 of Cohens where ci ⊆ α+i+1. Using an absolute pairing function we may think
of the sequence 〈ci : i ∈ x〉 as a single set x1 ⊆ α+α of ordinals. Set α1 = α+α.

• At stage n + 1, we want to code the set xn ⊆ αn. Do simple Cohen coding at αn
+ to

code xn, producing a sequence 〈ci : i ∈ xn〉 of Cohens where ci ⊆ αn
+i+1. Again using an

absolute pairing function we may think of this sequence as a single set xn+1 ⊆ αn+1, where
αn+1 = αn

+αn .
• After ω many stages, we have the full generic for for Cohen coding, which we may think

of either as a sequence 〈xn : n < ω〉 of sets of ordinals or as a sequence c̄ of Cohens. The
domain of c̄ is unbounded in the interval [α, αω), where αω = supn αn.

Of course, we do not know which cardinals in stage n+ 1 we will be adding Cohens to until we
have the generic for stage n. So in the ground model we cannot yet identify this. Nonetheless, we
can compute the cardinals αn in the ground model, and thereby determine the interval [α, αω) used
for this coding. If not explicitly addressed, I will implicitly assume that the interval used is clean
for coding when talking about Cohen coding.

The following lemma gives the self-encoding property of Cohen coding.

Lemma 5 (Self-encoding lemma). Let V[c̄] be a forcing extension in which a set x of ordinals
has been Cohen coded in the interval [α, αω). If W ⊆ V[c̄] is an inner model which contains each
individual Cohen ci from c̄, then W contains the entire sequence. More generally, suppose V̄ is
a model in which Ord many sets of ordinals have been Cohen coded in different disjoint intervals,
where the starting points α form a definable class. (Possibly other coding was done to produce V̄, but
we assume no other Cohens were added to the coding regions.) If W ⊆ V̄ is an inner model which
contains each individual Cohen from each of these codings, then the entire Ord-length sequence of
all Cohens across all codings is definable over W .

Proof. It suffices to prove the more general statement. Consider such a W and we want to show
that C̄, the Ord-length sequence of all the Cohens is definable over W . First, observe that we can

2Here is a simple example to illustrate the problem if we do not do this. Suppose we first add a Cohen real c

then force over V[c] to add a Cohen generic subset d of κ > ω. If d ∈ W ⊆ V, then c ∈ W , because by density c is
coded into d.
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identify dom C̄ simply by looking at which cardinals in the coding regions contain Cohen subsets.
So we only have to uniformly identify which Cohen subset of a given cardinal is the one in C̄. Fix
a starting point α and look within the coding region [α+, αω). To identify the Cohens in C̄ in this
region it suffices to identify each xn for this region. We can identify xn by looking in the region
[αn, αn+1). Namely, i ∈ xn if and only if there is a Cohen subset of αn

+i+1. This definition is
uniform across all n and all starting points α, so we have defined C̄ in W . �

If we would like to code x into the mantle, then it is not enough to Cohen code it once, as the
following simple example illustrates. Start with L and force to add a Cohen real x ⊆ ω. Follow
this by forcing over L[x] to Cohen code x at ω1 to get L[x][c̄]. Then L is a ground of L[x][c̄] and so
ML[x][c̄] = L does not contain x. The fix to this is to Cohen code x cofinally often.

Lemma 6. Let W be a ground of V. Then W and V agree on a tail about which cardinals contain
subsets which are Cohen generic over L.

Proof. Suppose that C̄ is a proper class-sized sequence of Cohen sets which are in V but not W .
Then W ⊆ W [C̄] ⊆ V. So by the intermediate model theorem we get that W [C̄] is an extension
of W by set forcing. But set forcing cannot add a proper class of Cohen sets. Contradiction
achieved. �

As a consequence of this lemma, if x is Cohen coded cofinally often then x is in the mantle. This
can be achieved by an Ord-length product, repeatedly Cohen coding x in different coding regions.
For coding sets into deeper inner mantles, it will be convenient to not use contiguous blocks of
cardinals when Cohen coding sets. Let me first make an auxiliary definition.

Definition 7. If R is a class of cardinals and α and i are ordinals then let SucciR(α) be the i-th
successor of α in R. More precisely, β = SucciR(α) is the unique cardinal in R so that R ∩ [α, β)
has ordertype i. In particular, SucciR(0) is always the i-th cardinal in R.3

It is straightforward to modify the above-described coding apparatus to go along an arbitrary
class R rather than along the class of all cardinals. Namely, replace all references to α+i with
SucciR(α). I will use simple Cohen coding and Cohen coding to refer to the general case of coding
along an arbitrary coding region, and often omit explicit reference to the coding region used. We
need, of course, that R remains a definable class in the extension if we want to be able to decode
after forcing. In this article, the coding regions we consider will be ∆0- or ∆1-definable, and so
they will be definable in the extension by the same definition.

Suppose we want to code x into a finite stage inner mantle Mk. Then we need to code x cofinally
often, and we need to code those codes cofinally often, and so on. As such, the pattern our coding
will follow is that of a tree, namely ≤kOrd. And we will need more complicated tree patterns for
later forcings, so let us first take a step back and consider a general framework.

In this article we will work only with well-founded trees. My trees grow upward, so s < t in
T means that t is an extension of s. I will have occasion to talk about subtrees whose root is a
non-root node in T , so I will use the term rooted subtree to refer to those subtrees which have the
same root as T . All supports will be set-support. I first give a formal definition, following Groszek

3Note that if R = Card then SucciR(α) = α+i.
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and Jech’s more general treatment of iterations along a general partial order [GJ91],4 and follow
with a more intuitive treatment.

Definition 8. Consider a tree T , possibly a proper class and suppose P is a forcing partial order
whose conditions are functions with domain a set-sized rooted subtree of T . For S a rooted subtree
of T , s ∈ T , and p ∈ P, make the following definitions:

• P � S = {p � S : p ∈ P} is the restriction of P to S.
• P � <s = P � {t ∈ T : t < s} is the restriction of P to below s.
• P � ≤s = P � {t ∈ T : t ≤ s} is the restriction of P up to s.
• p � s = p � (P � <s) is the restriction of p to below s.

Definition 9. Consider a tree T and partial order P as in the previous definition. Say that P is a

tree iteration along T if there is a T -indexed sequence
〈
Q̇s : s ∈ T

〉
of names for iterands satisfying

the following.

• Q∅ is trivial forcing.
• For non-root s ∈ T , the name Q̇s is a (P � <s)-name.

• For each s ∈ T , the forcing P � ≤s is the two-step iteration (P � <s) ∗ Q̇s.
• If p ∈ P and s ∈ T , then p(s) is a name for a condition in Q̇s.
• For p, q ∈ P, we have p ≤ q if and only if (i) dom p ⊇ dom q, (ii) p � s ≤ q � s, and (iii)
p � s 
 p(s) ≤ q(s), where we quantify over all appropriate s.

• If p ∈ P and q ∈ P � S, for some rooted subtree S, so that (p � S) ≤ q then the condition r
which extends q by setting r(s) = p(s) for each s ∈ dom p \ S is in P.

A generic Ḡ for a tree iteration can be thought of as a sequence of generics Gs for each iterand Qs.

Observe that if S is a rooted subtree of T then P � S is a complete suborder of P, and that a
generic Ḡ for P is interdefinable with the collection of its restrictions to rooted subtrees. If S ⊆ T
is a rooted subtree set Ḡ � S to be Ḡ � (P � S) and similarly for Ḡ � <s and Ḡ � ≤s.

Observation 10. Let P be a tree iteration along T and suppose Ḡ is a generic for P. If s and t
are incomparable nodes in T with infimum r, then Gs and Gt are mutually generic over V[Ḡ � ≤r].
More generally, if S is a rooted subtree of T and s, t ∈ T \ S are incomparable nodes, then Gs and
Gt are mutually generic over V[Ḡ � S]. �

This observation gives the basis for understanding how to inductively build up tree iterations:
climbing up a branch corresponds to doing an ordinary iteration, and splitting at a node corresponds
to product forcing at that stage. This is the approach I will take to define tree iterations.

Observe that tree iterations subsume both products and standard iterations; a product is a tree
iteration along a tree consisting of only a root and its successors, while an iteration is a tree iteration
along a non-branching tree. As a fact of particular use to us, a product of tree iterations is itself
a tree iteration, with the underlying tree obtained by introducing a new root and making the old
roots its immediate successors.

Groszek and Jech give calculations for chain condition and closure properties for generalized
iterations. I state them below, specialized to the case of tree iterations.

4There is a minor implementation difference; Groszek and Jech do not require there be a least element in the
partial order which corresponds to trivial forcing, whereas for my context I find this a convenience, to fit with trees

always having a unique root. One can translate between the two different implementations by adding/removing the

trivial forcing at the bottom.
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Lemma 11 ([GJ91, Lemma 3]). Suppose P is a tree iteration along a well-founded tree T and that
each iterand in P is <κ-closed (respectively, <κ-distributive). Then P is <κ-closed (respectively,
<κ-distributive).

Lemma 12 ([GJ91, Lemma 4]). Assume the GCH and let κ < λ be regular cardinals. If P is a tree
iteration along a well-founded tree T and whenever S is a subtree of T with cardinality <κ we have
|P � S| < λ, then P has the λ-cc.

For this lemma, you can drop the assumption of the GCH by more carefully stating the cardinality
assumptions. Groszek and Jech state it with the GCH assumption, and I left it in that form because
the models in this paper will satisfy the GCH.

From these two lemmata we can derive what I will call the safety lemma for coding. It states
that you only add Cohen subsets to a cardinal you intend to, ensuring that different parts of the
coding do not interfere with each other.

Lemma 13 (Safety lemma). Assume the GCH. Let P is a tree iteration along a well-founded tree T

where each iterand in P is a set-support iteration of AddL forcings. For a cardinal α suppose that
there is at most one iterand Q̇s in P which adds a Cohen (over L) subset to α. Further suppose that

every other iterand Q̇t is either <α-distributive or has the α+-cc. Then, after forcing with P, any
Cohen subset of α was added by the iterand Q̇s. In particular, if no iterand adds a Cohen subset to
α, then P adds no Cohen subset to α.

Proof sketch. If P includes an iterand Q̇s which adds a Cohen subset to α, then we can split P into
three pieces: first, the rooted subtree consisting of all stages not at or above s; second, the stage s
itself; third, the stages above s. If the first and third pieces, each of which has no iterand adding
a Cohen subset to α, do not add any Cohen subsets to α, then we are done. So it suffices to prove
the case where no iterand adds a Cohen subset to α.

This is proved by an induction up T . A subtree consisting only of small—i.e. <α-distributive—
iterands will be <α-distributive, by Lemma 11, and so not add any Cohens to α. A subtree
consisting only of big—i.e. with the α+-cc—iterands will have the α+-cc, and thus not add any
Cohens to α. We inductively break down T into a tree of smaller subtrees, each of which consists
either uniformly of small iterands or uniformly of big iterands. None of the subtree forcings add
any Cohens to α, and so inductively the entire forcing P will add no Cohens to α. �

With some general theory now at our disposal, let us discuss the specific coding forcings which
will be used. To start, we want to force to code a set of ordinals X into the k-th inner mantle.
Ensuring we have enough space to code everything is straightforward. Using our favorite absolutely
definable bijection <ωOrd → Ord we can partition a coding region R into class-sized subregions
Rs for each s ∈ <ωOrd, and if R were absolutely definable then so would be the Rs. Our coding
forcing will then be a tree iteration of Cohen coding forcings along the tree ≤kOrd.

Definition 14. Consider a set x of ordinals with λ = supx,5 and a finite ordinal k > 0. Let
T = ≤kOrd. Then the k-height tree coding forcing Tk(x) is a tree iteration along T defined as
follows.

• The initial iterand is trivial forcing. Set x∅ = x. Now proceed inductively upward along T
to define the rest of the forcing.

5Recall that we assume without loss of generality that supx 6∈ x.
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• After forcing stage s ∈ T we have a set xs of ordinals to code for the next level of stages.
We will do so Ord often, via a set-support product using Cohen coding. The iterand for
stage sa〈ξ〉 is Cohen coding of xs. Call the code produced at stage sa〈ξ〉 by xsa〈ξ〉, which
we can think of as a set of ordinals.

Call the generic produced for the entire Tk(x) forcing c̄. We can think of this generic as a tree of
sets of ordinals xs, or we can think of c̄ as a sequence of Cohens cα ⊆ α for an appropriate class
of cardinals. By the Self-encoding Lemma 5 the entire sequence can be recovered from just having
the cα’s by themselves, or from just having every individual xs.

After forcing with Tk(x), digging down the sequence of inner mantles corresponds to climbing
down the tree of generics. To see why this is we will need to understand how Tk(x) relates to its
restriction to certain subtrees.

If T is a well-founded tree and ` ∈ ω, let T−` denote the subtree consisting of nodes whose
distance to the closest leaf node is at least `. So

T = T−0 ⊇ T−1 ⊇ · · · ⊇ T−` ⊇ · · ·

is a descending sequence of subtrees, where at each step we chop off all the leaf nodes. Given a tree
iteration P along T , this then gives a descending sequence of complete subforcings P−` = P � T−`
of P. To understand this sequence is it enough to analyze what happens at one step, as P−(`+1) =
(P−`)−1.

Work in the intermediate extension by P−1. For any leaf node s ∈ T , we have all the data needed

to interpret the iterand Q̇s. Note however, that the names Q̇s are not P−1-names.6 Rather, they are
names in the subposet consisting of the path from the root to below s. So for our use case, Qs is the
Cohen coding forcing as computed in a certain inner model. To get from the intermediate extension
to the full extension, we force with the (set support) product of these Qs’s. These iterands Qs’s
are iterations of Cohen forcings, so we can think of their product as an iteration of Cohen forcings,
except each that each stage is defined in L. This sort of iteration was previously studied by Reitz
[Rei20]. Here is a definition specialized to our context.7

Definition 15. A generalized Cohen iteration is at iteration P =
〈
Pα, Q̇α : α ∈ R

〉
along a class

R of regular cardinals satisfying the following.

• Q̇α is a name which is forced to be Add(α, 1)Wα , where
• Wα is (forced to be) an inner model of VPα , one which contains the ground model V, and
• Wα |=

∣∣Add(α, 1)V
∣∣ =

∣∣Add(α, 1)Wα
∣∣.

In the context of this article, we force over L and Wα is always L, so the conditions are trivially
satisfied. Note that this relies on it being, as it will be for us, that L is correct about cardinals.

Reitz proved that generalized Cohen iterations have nice distributivity properties.

Definition 16. A class forcing P is a progressively distributive iteration if for every regular α you
can factor P as P ∼= Phead ∗ Ṗtail where Phead is a set and Phead 
 Ṗtail is <α-distributive.

Theorem 17 (Reitz [Rei20, Theorem 14]). Any generalized Cohen iteration is a progressively
distributive iteration. In particular, any generalized Cohen iteration preserves ZFC.

6Except in the edge case where T is linear at least up to the penultimate level.
7Reitz’s definition is more general, allowing iterands being of the form Add(α, λ) (as defined in an inner model),

rather than merely of the form Add(α, 1).
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When splitting an iteration consisting of Cohen coding forcings we may choose to keep all iterands
in one Cohen coding forcing on the same side of the split, and thereby split this iteration into a
product Phead × Ptail. Cohen coding forcing starting at α is <α-distributive, and so Reitz’s work
yields that this forcing defined in an inner model which meets the requirements is <α-distributive.
So having the set-sized head-forcing Phead consisting of iterands from the Cohen coding for small
enough starting points shows we have a progressively distributive product. That is, not only can we
split the forcing into a set-sized head forcing and a sufficiently distributive tail forcing, but we can
do these two forcings in either order.

We are (finally!) ready to compute some inner mantles. Let us begin with handling the situation
with tree-like coding a single set of ordinals.

Lemma 18. Force over L[x] with T = Tk(x) (using an appropriate coding region R) to get L[x][c̄].
For ` ≤ k let c̄−` be the restriction of c̄ to T−`. Then, for ` ≤ k, we have (M`)L[x][c̄] = L[x][c̄−`].
In particular, (Mk)L[x][c̄] = L[x].

Proof. Work in L[x][c̄]. We prove this by induction on `. The base case M0 = L[x][c̄−0] = L[x][c̄] is
trivial.

(M`+1 ⊇ L[x][c̄−(`+1)]) Consider the piece of the generic xs coming from stage s where s ∈ T
haslen s < k − `. By the inductive hypothesis, xsa〈ξ〉 is in M` = L[x][c̄−`] for every ordinal ξ. If

W ⊆ M` is a ground then it contains xsa〈ξ〉 for some large enough ξ, whence xs ∈ W . Since W

was arbitrary, we conclude xs ∈ MM`

. By the Self-encoding Lemma 5, we may conclude the entire
sequence c̄−(`+1) is definable in M`+1.

(M`+1 ⊆ L[x][c̄−(`+1)]) Consider a set A ∈ L[x][c̄−`] \ L[x][c̄−(`+1)]. Then A was added by the
(k − `)-th level of Tk(X), call this forcing S. This forcing is a progressively distributive product.

So we may split it as S = Shead × Stail where Shead is a set and Stail is |A|+-distributive. If Gtail is
the restriction of the generic G ⊆ S to Stail, then L[x][c̄−(`+1)][G

tail] is a ground of L[x][c̄−`] which

does not contain A. Thus A 6∈ M`+1 = ML[x][c̄−`]. �

This lemma generalizes to products of tree-like codings.

Lemma 19. Suppose T is a product of tree-like codings Tki(xi) along disjoint coding regions, each
of which is clean for coding. Think of T as a tree iteration, where its nodes at level n + 1 are the
nodes of level n along the Tki(xi, Ri)’s. Let L[x̄][c̄] be an extension by T, and set c̄−` to be the
restriction of c̄ to T−`. Then, for each ` < ω, we have that (M`)L[x̄][c̄] = L[x̄][c̄−`].

Proof sketch. The same inductive argument of climbing down the tree as in the previous lemma
applies. �

To close off this section, I would like to briefly address the choice to use Cohen coding. For
the results of this article this coding suffices. We are interested in constructing counterexample
models, so it is no harm to use a coding method that only applies to a select class of models. And
Cohen coding is particularly simple, which shortens some arguments. But the choice of coding is
not essential, and one could use alternate methods. For instance, one could code sets by the pattern
of where the GCH holds/fails, as was done in [RW19].

3. Failing to satisfy AC

In this section I construct a model whose ω-th inner mantle is a definable class but fails to satisfy
AC, establishing Main Theorem 4. My strategy follows that of McAloon for the analogous result
about HOD [McA74].



THE ω-TH INNER MANTLE 9

Theorem 20 (An elaboration of Main Theorem 4). There is a class forcing extension of L in which
Mω is a definable class but Mω |= “there is no well-order of P(ω)”.

Proof. Begin by forcing over L to add a generic A ⊆ AddL(ω, ω1). To clarify, since the implemen-
tation details will matter later: Here A is an ω × ω1 grid of 0s and 1s, where the rows of A are the
ω1 many Cohen reals added over L. For k < ω let Ak = {(n, α) ∈ A : n ≥ k} be the portion of A
from column k rightward. Using our favorite absolutely definable pairing function we may think of
each Ak as a subset of ω1. In an abuse of notation, I will use Ak to mean either the ω × ω1 binary
grid and the subset of ω1 coding this grid, depending on context. We now want to force to code
each Ak into Mk while ensuring that no Ak is in Mω.

To do this, force with the full support product of the forcings Tk(Ak), where these codings take
place on disjoint regions. We have all of the cardinals > ω1 clean for coding, and we may split them
into ω many subregions in an absolutely definable way. Call this product T, which we may think
of as a tree iteration. Let c̄ ⊆ T be generic over L[A].

Work in L[A][c̄]. By Lemma 19 we can calculate the first ω many inner mantles. Namely,
Mk = L[c̄−k], where c̄−k is the restriction of c̄ to the nodes at most k far from a leaf. In particular,
Ak ∈ Mk. However, Ak 6∈ Mk+1 because Ak is not constructible from A` for ` > k.

It follows immediately from this computation of the inner mantles that the sequence of inner
mantles 〈Mη : η ≤ ω〉 is definable over L[A][c̄], and that in each inner mantle the tail sequence is
definable. By Lemma 3 we get that Mω |= ZF. It remains only to see that Mω does not have a

well-order of its reals. Observe that ω
L[A][c̄]
1 = ωL

1 , since adding c̄ does not add any new reals. Thus,
if Mω has a well-order of its P(ω) it must have one of ordertype ω1. In such a case, there would be
X ⊆ ω1 so that P(ω) ∩Mω ⊆ L[X]. It therefore suffices to show there is no such X.

Take any X ⊆ ω1 in Mω. Then X ∈ L[A][c̄], but we added c̄ by coding high enough so as to not
add new subsets of ω1. So already X ∈ L[A]. Because Add(ω, ω1) has the ccc we get that X was
added by a countable piece of A. That is, there is an ordinal α < ω1 so that X ∈ L[A � α] where
A � α is the rows of A below α. Let z be one of the rows of A above α. Then z is Cohen-generic
over L[A � α] and in particular z 6∈ L[X]. But z is in Mω since each Mk contains a tail of z and z
can be recovered from a tail by prepending a finite binary sequence. We have seen that z witnesses
that P(ω) ∩Mω 6⊆ L[X], as desired to complete the proof of the theorem. �

Combining this theorem with known techniques we can see that this situation can happen in a
model of V = HOD.

Corollary 21. There is model of ZFC + V = HOD in which Mω is a definable class but fails to
satisfy AC.

Proof. Let N be the extension of L from the theorem. Class force further over N to get a model
N [G] |= V = HOD in which MN [G] = N , as in [FHR15, Theorem 67]. Then (Mω)N [G] = (Mω)N is
a definable class in N [G] but fails to satisfy AC. �

4. Failing to be a definable class

In this section I construct a model of ZFC whose ω-th inner mantle fails to be a definable class,
establishing Main Theorem 2. Following Harrington’s analogous construction for the ω-th HOD,8

the strategy will be as follows. We will start with a model of V = L. We will then force over this
model to add certain Cohen subsets in such a way that which cardinals have Cohen subsets (generic

8See [Zad83, Section 7].
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over L) in Mω codes the truth predicate for L. If our original model of V = L is moreover a Paris
model, one whose ordinals are each definable without parameters,9 then this will imply that Mω

cannot be a definable class. For if it were definable then we could define a surjection ω → Ord,
which would contradict the Replacement axiom schema.

To prove Main Theorem 2 we will need two additional tools beyond the coding forcings in
Section 2.

The first, which I will call robust Cohen coding, will not only ensure that the full sequence for the
generic is recoverable from the individual Cohens, but will also ensure the same happens in every
ground. To do this, rather than have ω stages in the iteration to code previous stages, have Ord
many stages. In more detail, robust Cohen coding to code a set x, call it RCC(x), is a set-support
Ord-length iteration, which we will do along an absolutely definable coding region consisting of
regular cardinals. Before stage ξ + 1 in the iteration we have the sequence 〈ci : i ≤ ξ〉 of generics
up to stage ξ, which we may think of as a single set of ordinals xξ. For stage ξ + 1 do simple
Cohen coding forcing to code xξ into the next unused block of the coding region. As with Cohen
coding, we can compute in advance the blocks where each stage of the iteration will take place, even
though we cannot compute in advance exactly which cardinals will be given Cohen generic subsets.
It is straightforward to check that robust Cohen coding enjoys the self-encoding property of Cohen
coding, and moreover that the entire generic can be recovered just from a tail of the individual
Cohen subsets. In particular, any ground of a forcing by robust Cohen coding must contain the
entire robust generic.

The second tool we need is a way to overwrite coding blocks. If R is a class of cardinals used
as a coding block, we can overwrite the coding pattern in R by including a Cohen subset to every
cardinal in R. Let O(R), the overwrite forcing on R be the set-support product forcing which does
this, namely

O(R) =
∏
α∈R

AddL(α, 1).

It may be that the original codes living in the region R are still definable—for example, if they were
coded elsewhere—but in the absence of such this can be used to destroy coding information.

Theorem 22. There is a class-forcing extension of L so that in the Mω of this extension the truth
predicate for L is a definable class.

Proof. Fix an absolute one-to-one correspondence between formulae ϕ with parameters from L and
the class consisting of all cardinals κ(ϕ) with odd index, i.e. κ(ϕ) = ℵ2·ξ+1 for some ordinal ξ. The
class forcing we use will be a set-support product of forcings which add a Cohen subset cϕ to κ(ϕ)
and follows this with a coding forcing which ensures cϕ is in Mω if and only if L |= ϕ. To do all this
coding, we need to split up remaining cardinals into Ord-sized coding regions for each ϕ. Because
L has a ∆1 global well-order, this can be arranged. Each of these coding regions will in turn be
split into yet smaller coding regions, one for each short enough sequence 〈x1, . . . , xk〉 of sets from
L. That too can be done in an absolute way. I leave the details of defining the coding regions in a
way that ensures there is enough space for the following work to the interested reader.

When defining the coding forcing for cϕ, we must take care that the definition refers only to a
bounded level of truth in L, to ensure that the entire product forcing is definable. Before jumping
into the full details, let me illustrate the strategy by sketching what happens with a simple example.
See Figure 1 for a pictorial representation of this example.

9Paris showed [Par73] that every consistent extension of ZF has a Paris model. Note that in particular the
Shepherdson–Cohen [She53; Coh63] minimum transitive model of ZF is a transitive Paris model of V = L.
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Add(κϕ, 1)

RCC
for each x

O
for each x; ξ

T1

for each x, y; ξ
so that L |= ψ(x, y)

T1

for each x; ξ

Figure 1. Triangle coding for the simple Σ2 example. Each node in the diagram
says what forcing is done at each stage and the parameters determining how many
copies of the forcing are done at each stage.

Consider a Σ2-formula ϕ in the form ∃x¬∃y ψ(x, y) where ψ is Σ0 and possibly contains parame-
ters from L. Consider the Cohen generic cϕ ⊆ κ(ϕ). After adding this real, we force with a product,
for each x ∈ L, of robust Cohen forcings to code cϕ. Call dϕ(x) the robust generic corresponding
to the choice of x, and dϕ(x; ξ) will denote the ξ-th set-sized piece of the generic, of which there
are Ord many. Next, for each dϕ(x; ξ) force with the product of T1(dϕ(x; ξ)), producing a code
d̄ϕ(x; ξ), and overwrite forcing for the region where dϕ(x; ξ) lives, producing an overwrite block
oϕ(x; ξ) consisting of a Cohen subset for each cardinal in this region. Using a pairing function we
may think of oϕ(x; ξ) as a single set of ordinals. Finally, for each y ∈ L we query the Σ0-truth pred-
icate for L and ask whether L |= ψ(x, y). If so, follow the forcing to add oϕ(x; ξ) with T1(oϕ(x; ξ)),
producing the code d̄ϕ(x, y; ξ). Else, if L 6|= ψ(x, y), then do nothing.

Let us now analyze this and see that we have coded cϕ into Mω if and only if L |= ϕ. First, observe
that dϕ(x; ξ) survives into M for each x ∈ L and each ξ. This is because any ground must contain
a tail of d̄ϕ(x; ξ), and can thereby recover dϕ(x; ξ). Whether it survives to deeper inner mantles
depends on whether oϕ(x; ξ) made it into M. Consider first the case where L |= ∃x¬∃y ψ(x, y), as
witnessed by a fixed x ∈ L. Then, there is no y ∈ L so that L |= ψ(x, y). Accordingly, we did not
do any coding forcing to ensure oϕ(x; ξ) gets into M. So inside M we can look at the region where
dϕ(x; ξ + 1) was coded and use the Cohen pattern there to define dϕ(x; ξ). So the entire robust
generic dϕ(x) is a definable class in M, and hence dϕ(x) ∈ Mω. This then implies that cϕ ∈ Mω, as
desired.

Consider next the other case that L 6|= ∃x¬∃y ψ(x, y). Then, for each x ∈ L there is y ∈ L so
that L |= ψ(x, y). Fix x ∈ L and and ordinal ξ. We coded oϕ(x; ξ) via some code d̄ϕ(x, y; ξ) and
so oϕ(x; ξ) survives into M. Thus, in M the coding region for each dϕ(x; ξ) is overwritten and so
the robust generic dϕ(x) fails to be a definable class in M. No piece dϕ(x; ξ) will survive into M2.
Since this happens for every x, we get that cϕ 6∈ Mω.

Observe that the definition of which codes to include only used the Σ0-truth predicate for L.
We were able to code the Σ2-truth predicate for L into the ω-th mantle of the extension by using a
smaller fragment of the truth predicate for L. The task for the general case is then to see how we
can do this for all Σk-formulae, reducing everything down to the Σ0-truth predicate for L. We will
follow the idea of Σ2-case, but with more layers of coding.
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Definition (Triangle coding). Let me now describe the general case, a tree iteration I will call
triangle coding. Fix a Σk-formula ϕ with parameters from L, where k > 0 is even.10 Write ϕ in
the form

∃x1¬∃x2∃ · · · ¬∃xk ψ(x1, . . . , xk),

where ψ is Σ0.
to inductively describe the triangle coding forcing. I will organize it into innings, which consist

of stages on multiple levels of the tree, starting with Inning −2 and going to Inning k. See Figure 2
for a pictorial representation of the coding pattern.

• (Inning −2) The root stage is trivial forcing.
• (Inning −1) The first nontrivial level of the of the forcing consists of a single stage, adding

the Cohen generic cϕ ⊆ κ(ϕ).
• (Inning 0) The second level of the forcing, consists of one stage for each x1 ∈ L. For

each stage do robust Cohen coding to code cϕ, producing a code dϕ(x1). This code is an
Ord-length sequence of generics, each coding the previous generics. Call the set-sized pieces
dϕ(x1; ξ1), for ξ1 ∈ Ord.

• (Inning 1) We continue building upward with two subtrees above this stage, which I will
call the above subtree and the right subtree. The above subtree consists of the set-support
product of Tk−1(dϕ(x1; ξ1)), for ξ1 ∈ Ord, to ensure that the codes dϕ(x1; ξ1) survive into
Mk−1. Whether they survive deeper depends on what happens in the right subtree. Call the
generics from these Tk−1(dϕ(x1; ξ1)) by d̄ϕ(x1; ξ1).

The immediate next level in the right subtree consists of overwrite forcings in the regions
where the dϕ(x1; ξ1) are coded. As usual, we take a set-support product to extend the tree
iteration upward to this next level. Call the resulting generics by oϕ(x1; ξ1), and we will
think of each as a single set of ordinals. We inductively continue building up the right
subtree in the subsequent innings.

• (Inning `, for 1 < ` < k) Immediately prior to this inning we did overwrite forcings
to produce generics oϕ(x1, . . . , x`−1; ξ1, . . . , ξ`−1). We need to say how we continue the
tree iteration past these stages. For the immediate next stages, for each x` ∈ L, do
T1(oϕ(x1, . . . , x`−1; ξ1, . . . , ξ`−1)), to produce a code dϕ(x1, . . . , x`; ξ1, . . . , ξ`−1). Recall that
this forcing is an Ord-sized product of forcings to code the overwrite generic into the Cohen
pattern. We can break this product up into set-sized pieces, splitting each class-sized code
into set-sized pieces dϕ(x1, . . . , x`; ξ1, . . . , ξ`) indexed by ξ` ∈ Ord.

We continue the tree iteration beyond each T1, with two subtrees beyond each stage.
The above subtree for the stage indexed by 〈x1, . . . , x`; ξ1, . . . , ξ`−1〉 consists of a set-support
product of Tk−`(dϕ(x1, . . . , x`; ξ1, . . . , ξ`)) for each ξ` ∈ Ord. This part of the tree iteration
will ensure that the codes dϕ(x1, . . . , x`; ξ1, . . . , ξ`) survive into Mk−`. Whether they survive
deeper depends on what happens in the right subtree. Call the generics from these tree-like
codings by d̄ϕ(x1, . . . , x`; ξ1, . . . , ξ`).

The immediate next level in the right subtree consists of overwrite forcings in the re-
gions where the dϕ(x1, . . . , x`; ξ1, . . . , ξ`) are coded. As usual, we take a set-support prod-
uct to extend the tree iteration upward to this next level. Call the resulting generics by
oϕ(x1, . . . , x`; ξ1, . . . , ξ`), and we will think of each as a single set of ordinals. We induc-
tively continue building up the right subtree in the subsequent innings.

10A small modification would handle the odd case, but it suffices to consider only the even case and it slightly
simplifies the presentation.
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• (Inning k) We are almost done. In right subtree piece of Inning k − 1 we produced over-
write generics oϕ(x1, . . . , xk−1; ξ1, . . . , ξk−1), and now we have to decide whether to force
to code them into M1. To make this decision we will query the Σ0-truth predicate for
L, once for each xk ∈ L. If L |= ψ(x1, . . . , xk) then we will have a stage consisting of
T1(oϕ(x1, . . . , xk−1; ξ1, . . . , ξk−1)), producing a code dϕ(x1, . . . , xk; ξ1, . . . , ξk−1). Else, if
L 6|= ψ(x1, . . . , xk), then we include no stage corresponding to xk. As usual, these stages
extend the previous one via a set-support product.

After these k innings we have a tree iteration along a well-founded tree. As we will see, this triangle
coding forcing ensures that cϕ survives into Mω if and only if L |= ϕ.

To get the full class forcing we will use, take the set-support product of the triangle codings for
each ϕ. This product of tree iterations, call it P, is itself a tree iteration along a well-founded tree.

Work in L[G], the extension by forcing with P. Let us analyze the sequence of inner mantles,
which I will organize as a series of lemmata. The Safety Lemma 13 implies that to understand
where cϕ is coded it suffices to look only at the iterand of the product P corresponding to ϕ.

Lemma 22.1. For each Σk-formula ϕ, sequence 〈x1, . . . , x`〉 from L, and sequence 〈ξ1, . . . , ξ`〉 of
ordinals, where ` ≤ k, the code dϕ(x1, . . . , x`; ξ1, . . . , ξ`) ∈ Mk−`.

Proof. This is because we did (k−`)-height tree-like coding of the code dϕ(· · · ) in a region that was
never overwritten. Like in Lemma 18, the portion of the code which survives into Mi is precisely
that corresponding to nodes distance ≥ i from the top. After k − ` many steps all that remains is
the set dϕ(x1, . . . , x`; ξ1, . . . , ξ`) being coded by this tree-like coding. �

Next, let us see the role of the overwrite generics. We start with the penultimate inning, and
work our way down the tree.

Lemma 22.2. For each Σk-formula ϕ, each sequence 〈x1, . . . , xk−1〉 from L and each sequence
〈ξ1, . . . , ξk−1〉 of ordinals, the overwrite generic oϕ(x1, . . . , xk−1; ξ1, . . . , ξk−1) is in M1 if and only
there is xk ∈ L so that L |= ψ(x1, . . . , xk).

Proof. (⇒) Fix xk so that L |= ψ(x1, . . . , xk). Then, the code dϕ(x1, . . . , xk; ξ1, . . . , ξk−1) ensures
that the overwrite generic gets into M1. Specifically, any ground will contain a tail of the code
dϕ(x1, . . . , xk; ξ1, . . . , ξk−1), and thus any ground can construct the overwrite generic by looking at
the Cohen pattern in the region where dϕ(x1, . . . , xk; ξ1, . . . , ξk−1) is coded.

(⇐) Suppose L 6|= ψ(x1, . . . , xk) for every xk ∈ L. Then in the P forcing there are no stages
beyond the stage which added the overwrite generic. Let G− be the portion of the generic which
excludes this overwrite forcing stage. Then V [G−] is a ground which does not contain the overwrite
generic. (Namely, to get to V [G] from V [G−] you force with the overwrite forcing, which is a
set-sized forcing.) So the overwrite generic is not in the mantle. �

Lemma 22.3. For each Σk-formula ϕ, sequence 〈x1, . . . , x`〉 from L, and sequence 〈ξ1, . . . , ξ`〉 of
ordinals, where ` < k − 1, the overwrite generic oϕ(x1, . . . , x`; ξ1, . . . , ξ`) is in Mk−`+1 if and only
every overwrite generic oϕ(x1, . . . , x`+1; ξ1, . . . , ξ`+1), across all x`+1, is not in Mk−`.

Proof. From Lemma 22.1 we know that the codes dϕ(x1, . . . , x`; ξ1, . . . , ξ`) survive into Mk−`. Con-
sider the case where overwrite generic from the right oϕ(x1, . . . , x`+1; ξ1, . . . , ξ`+1) is not in Mk−`.
Then, any ground of Mk−` can see a tail of the Cohen coding pattern in the region where the
code dϕ(x1, . . . , x`; ξ1, . . . , ξ`) lives, and thereby recover the overwrite generic which is coded by
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Add(κϕ, 1)

RCC
for each x1

O
for each x1; ξ1

T1

for each x1, x2; ξ1

O
for each x1, x2; ξ1, ξ2

T1

for each x1, x2, x3;
and ξ1, ξ2

O
for each x1, . . . , xk−2;

and ξ1, . . . ξk−2

T1

for each x1, . . . , xk−1;
and ξ1, . . . ξk−2

O
for each x1, . . . , xk−1;

and ξ1, . . . , ξk−1

T1

for each x1, . . . , xk;
and ξ1, . . . , ξk−1

so that L |= ψ(x1, . . . , xk)

Tk−1

for each x1; ξ1

Tk−2

for each x1, x2; ξ1, ξ2

Tk−3

for each x1, x2, x3;
and ξ1, ξ2, ξ3

T1

for each x1, . . . , xk−1;
and ξ1, . . . , ξk−1

. .
.

. .
.

· · ·

Figure 2. Triangle coding to code cϕ into Mω if and only if L |= ϕ. Each node in
the diagram says what forcing is done at each stage and the parameters determining
how many copies of the forcing are done at each stage. Solid arrows denote what
is being coded, and dashed arrows denote what is being overwritten.

dϕ(x1, . . . , x`; ξ1, . . . , ξ`), namely oϕ(x1, . . . , x`; ξ1, . . . , ξ`). Thus, this overwrite generic must get
into Mk−`+1.

Consider next the case where the overwrite generic from the right oϕ(x1, . . . , x`+1; ξ1, . . . , ξ`+1) is
in Mk−`. I claim that in this case, Mk−` has a ground which is the forcing to add the below overwrite
generic oϕ(x1, . . . , x`; ξ1, . . . , ξ`). Each cardinal α in the region where dϕ(x1, . . . , x`; ξ1, . . . , ξ`) lives

either had one or two Cohen (over L) generics added. Since AddL(α, 1) is forcing equivalent to

AddL(α, 2), this amounts to having a single Cohen generic for each α. The missing information
to recover dϕ(x1, . . . , x`; ξ1, . . . , ξ`) is its domain, which is interdefinable with the below overwrite
generic oϕ(x1, . . . , x`; ξ1, . . . , ξ`). �
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Lemma 22.4. For each Σk-formula ϕ, each x1 ∈ L, the robust Cohen code dϕ(x1) survives into
Mk if and only if the overwrite generic oϕ(x1; ξ1) is not in Mk−1 for every ordinal ξ1.

Proof. This is the similar the previous lemma, except I stated it separately because dϕ(x1; ξ1) codes
something different than the dϕ(· · · ) codes from later innings. The same argument goes through,
except that we use the properties of robust Cohen coding to know that the entire generic dϕ(x1) is
definable in Mk from knowing its definable in Mk−1 by looking at the non-overwritten region where
it lives. Note that we use that the choice of ξ1 does not matter; inductively applying Lemma 22.3
yields that if one choice of ξ1 works then they all do. �

Lemma 22.5. For each Σk-formula ϕ, the Cohen generic cϕ ⊆ κϕ survives into Mω if and only if
L |= ϕ.

Proof. This follows from the previous two lemmata by an induction on the quantifiers in ϕ, working
from the innermost out. For each 0 < ` ≤ k let ϕ` be obtained from ψ0 by prepending all but the
outermost ` quantifier blocks from ϕ. So ϕ can be written as ∃x1 ϕ1, or ∃x1¬∃x2 ϕ2, or so on.

The base case, that oϕ(x1, . . . , xk−1; ξ1, . . . , ξk−1) is in M1 if only if L |= ∃xk ψ(x1, . . . , xk), is
Lemma 22.2. Break the inductive step, from ` to `− 1 up into even and odd cases.

• (` is even) Assume that the overwrite generic oϕ(x1, . . . , x`−1; ξ1, . . . , ξ`−1) is in Mk−` if
and only if L |= ∃x` ϕ`(x1, . . . , x`). Then, by either Lemma 22.3, a below overwrite
generic oϕ(x1, . . . , x`−2; ξ1, . . . , ξ`−2) survives into Mk − `+ 1 if and only if there is no
x` so that L |= ϕ`(x1, . . . , x`). So some below overwrite generic survives if and only if
L |= ∃x`−1¬∃x` ϕ`(x1, . . . , x`). But this last formula is just ∃x`−1 ϕ`−1(x1, . . . , x`−1).

• (` is odd) This is handled similarly to the even case, except swap which quantifier is negated.
Note that for the ` = 1 case we use Lemma 22.4 instead of Lemma 22.3.

So after step ` = 1 we have that, for each x1 ∈ L that the robust Cohen code dϕ(x1) survives into
Mk if and only if L |= ¬∃x2 ϕ2(x1, x2). But then cϕ ∈ Mω if and only if L |= ∃x1¬∃x2 ϕ2(x1, x2),
i.e. L |= ϕ, as desired. �

As a consequence of this final lemma, Mω can define the truth predicate for L. Namely, define
it as the class of all κϕ which contain a Cohen generic subset. The lemma tells us cϕ ∈ M if and
only ϕ is true in L and the Safety Lemma 13 tells us that in case ϕ is not true in L then there are
no Cohen generic subsets of κϕ. �

Corollary 23 (An elaboration of Main Theorem 2). Any Paris model of ZFC + V = L can be
extended to a model of ZFC whose Mω is not a definable class.

Proof. Let L be a Paris model of ZFC + V = L. Let L[G] be the class forcing extension as in
Theorem 22 so that the truth predicate for L is a definable class in (Mω)L[G]. Suppose toward a
contradiction that Mω is a definable class in L[G]. Then, the truth predicate for L is a definable
class in L[G]. Because every ordinal in L is definable without parameters from this truth predicate

we can extract a surjection ω → OrdL, by mapping (Gödel numbers of) formulae defining an ordinal

to the ordinal they define in L. But then in L[G] we have a definable surjection ω → OrdL, so by

Replacement OrdL is a set in L[G], which is impossible. �

Let me also mention what this construction gives for ω-nonstandard models.

Corollary 24. Suppose L is an ω-nonstandard Paris model of ZFC+ V = L. Let L[G] be the class
forcing extension from Theorem 22. Then in L[G] the sequence of inner mantles does not stabilize
at any standard index k but no inner mantle Me of nonstandard index e is definable.
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Proof. Work in L[G]. That the sequence of inner mantles does not stabilize at a finite index follows
from the construction—we always code some information into Mk which was not in Mk+1. Suppose
toward a contradiction that Me were definable. Inside Me consider the class T of all ϕ ∈ L so that
cϕ has a Cohen generic (over L) subset. Externally to the model, we see from the work in the
theorem that T restricted to standard ϕ is the truth predicate for L. (T will also contain some ϕ
with nonstandard Gödel code.) So in Me we can define a cofinal map ω → Ord by sending n to
an ordinal ξ if n is the Gödel code for a formula ϕ(x) so the formulae “ϕ(ξ)” and “∃!x ϕ(x)” are
in T , and sending n to 0 otherwise. But then Me fails to satisfy Replacement, contradicting that
successor stages in the sequence of inner mantles always satisfy full ZFC. �

We can make the cut of indices of definable versus undefinable inner mantles occur at any Z-block
in ωL, not just the standard cut.

Corollary 25. Suppose L is an ω-nonstandard Paris model of ZFC + V = L. Fix a nonstandard
e ∈ ωL. Then L has a class forcing extension L[G][H] in which the indices f for definable inner
mantles are precisely those f ∈ ωL which are ≤ e+ n for some standard n.

Proof. Get L[G] using the forcing from the theorem, and then further force with M(e) from [RW19],
the class forcing which makes the ground model the e-th inner mantle of the extension (with the
sequence being strictly decreasing up to e. �

5. Future work

It is natural to ask whether there is anything special about ω, and I conjecture that there is not.

Conjecture 26. For any limit ordinal γ, it is consistent that the sequence of inner mantles does
not stabilize before γ and that Mγ is a definable inner model of ZF + ¬AC.

Conjecture 27. For any limit ordinal γ, it is consistent that the sequence of inner mantles does
not stabilize before γ and that Mγ fails to be a definable class.
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